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Abstract—We develop a two-dimensional (2-D) direction-of-
arrival (DOA) estimation scheme for coherent wideband source
signals using coherent signal subspace method based auxiliary-
vector (CSSM-AV) basis. Computation of the basis is carried
out by a modified version of the orthogonal CSSM-AV filtering
algorithm. The proposed method reconstructs the signal subspace
using a cross-correlation matrix after which the modified CSSM-
AV algorithm is employed to estimate the azimuth and elevation
angles. Then, successive orthogonal maximum cross-correlation
auxiliary vectors are calculated to form a basis for the scanner-
extended signal subspace. This technique is very efficient in re-
ducing the algorithm complexity. Since it does not require that the
eigenvectors be determined in order to find the signal subspace
and yields a superior resolution performance for closely spaced
sources even when the number of samples is low. Specifically,
the complexity of the proposed 2-D DOA estimation algorithm
compared to the CSSM algorithm is more favorable when the
number of signals arriving on the antenna element is much less
than the number of antenna elements. Performance evaluation
shows that the proposed method outperforms competing methods
such as CSSM, TOPS and WAVES algorithms in terms of
estimation error, probability of resolution and number of sample
support for a given SNR in scenarios in which many sources are
present in the system, the array size is large, and the number of
samples is small.

Index Terms—Wideband direction-of-arrival (DOA) estima-
tion, uniform circular arrays (UCA), auxiliary-vector (AV) fil-
tering, small sample support.

I. INTRODUCTION

Direction-of-arrival (DOA) estimation with sensor arrays
has been a central topic of signal processing research over
the past few decades due to its importance in radar, sonar, and
wireless communications [1], [2], [3]. DOA estimation tech-
niques can be classified into two main categories; maximum-
likelihood (ML) methods, which are based on the maximiza-
tion of the probability density function of the received signal
and signal subspace methods that are based on the eigen-
decomposition of the autocovariance matrix of the received
signal. Two of the well known subspace algorithms are mul-
tiple signal characterization (MUSIC) [4] and estimation of
signal parameters via rotational invariance technique (ESPRIT)
[5]. In general, ML-type algorithms have superior perfor-
mance compared to subspace-based techniques when either the
signal-to-noise (SNR) ratio or the sample size is small. Also,
in the case of correlated signal sources the performance of
subspace-based estimators degrades significantly, as compared

to ML schemes. The trade-off of ML-type algorithms com-
pared to subspace-based is the high computational complexity.

These DOA algorithms are primarily designed for narrow-
band signal sources and thus cannot be used for wideband
signals, as the phase difference between sensor outputs is
dependent on both the DOA and on the temporal frequency. A
number of wideband DOA estimation algorithms are proposed,
which are mainly based on coherent or noncoherent wideband
techniques. The incoherent signal subspace method (ISSM)
[6], [7] is one of the simplest wideband DOA estimation
method. In [7], the authors propose the ISSM for wideband
signals in which the received wideband signal is decomposed
into a set of narrowband signals on different frequency sub-
bands using the discrete Fourier transform (DFT), so that high-
resolution narrowband DOA estimators such as MUSIC can be
applied in each subband. In ISSM, each frequency subband
is processed independently and then the separate results are
averaged over all subbands. ISSM methods work well in
favorable situations, i.e., high SNR and well-separated signals.
Its performance may deteriorate with coherent sources or SNR
variations in different frequency subbands. An outlier in any
frequency subband could severely degrade the final estimate
due to the averaging process.

To overcome this problem a number of improved methods
have been proposed. Among those are the coherent signal sub-
space method (CSSM) [8]. In CSSM, the received wideband
signals are first decomposed into a set of narrowband signals
similar to ISSM. The covariance matrices of each subband
are transformed into covariance matrices of a certain focusing
frequency by multiplying them with focusing matrices. The
focusing matrices are used for the alignment of the signal
subspaces of narrowband components within the bandwidth
of the signals, followed by the averaging of narrowband co-
variance matrices into a universal covariance matrix. Then, any
narrowband DOA estimators such as MUSIC can be applied to
the universal covariance matrix to obtain the DOA estimates.
There are a number of different methods designed for focusing
matrices in the conventional CSSM. Although some of those
methods are simple to implement, they require initial DOA
estimates to calculate the focusing matrices. Therefore, the
final DOA estimates are very sensitive to the initial estimates.
The weighted average of signal subspace (WAVES) technique
[9] is a widely used method, which also requires the use of
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focusing matrices. Even though WAVES can avoid the initial-
value requirement by beamforming invariance techniques, its
performance is worse than the conventional CSSM that has
a good initial estimate and the existence of the beamforming
matrix depends on the size of a field of view (FOV) and the
array geometry.

The TOPS technique [10] stands for test of orthogonality
of projected subspaces, is a relatively new method which
is essentially ISSM and estimates DOA through tests of
orthogonality between projected signal subspaces and noise
subspaces whose performance is more favorable compared to
the conventional ISSM. TOPS algorithm first applies singular
value decomposition (SVD) to get the signal subspace f0 of
one frequency point that is present in the bandwidth of every
source. Based on this signal subspace, a matrix is constructed
that can transform the subspace of one frequency and one DOA
to another frequency and another DOA. Then, the orthogonal-
ity of projected signal subspaces and noise subspaces of every
DOA and every frequency are tested. In this processing it is
obvious that f0 plays a crucial role, as the estimate error of f0
can strongly affect the overall performance of the algorithm.
Moreover, it has the problem of detecting false peaks in the
pseudo spectrum and the performance deteriorates in the low
SNR regime or when having coherent sources.

In this paper, we propose a CSSM based auxiliary-vector
(AV) [11] subspace method coined as CSSM-AV for two-
dimensional DOA estimation for coherent wideband source
signals. The advantage of AV based algorithm is that it does
not require eigen-decomposition, hence it is favorable in terms
of algorithm complexity and its DOA estimation performance
has been reported to be superior in terms of resolution,
DOA estimation error for a given SNR [11]. Specifically, the
complexity of AV compared to the existing DOA methods
such as CSSM algorithm is more favorable when the number
of signals arriving on the antenna element is much less than
the number of antenna elements. One additional benefit of the
proposed method is that it can even operate under low sample
support, short data record size.

Performance evaluation demonstrates that the proposed
method has very good resolving capability, especially, when
the angle separation is very small, e.g. two degrees at low SNR
regime. In addition to that the proposed method provides fa-
vorable probability of resolution compared to TOPS, WAVES
and CSSM algorithms at low SNR regime.

The remainder of this paper is organized as follows. We
first present the system model in Section II. We then discuss
the conventional CSSM in Section III, after which we present
the proposed subspace auxiliary-vector algorithm in Section
IV. In Section V, we present and compare the computational
complexity of the proposed algorithm with other competing
algorithms. In Section VI, we discuss the performance eval-
uation of the proposed algorithm. Finally, in Section VII, we
draw the main conclusions.

II. SYSTEM MODEL

In this paper, we consider uniform circular array (UCA),
consisting of M isotropoic and identical antenna elements
distributed uniformly over a circle with radius R = λ/2, where
λ is the wavelength. The phase azimuth angle of mth element
is φm = 2πm

M with m = 1, 2, ...,M . K signals arriving on
the UCA with directions (θ1, φ1), (θ2, φ2), ..., (θK , φK). The
received signal for the mth sensor can be expressed as

xm(t) =

K∑
k=1

sk (t− τm(θk, φk))+nm(t), m = 0, 1, ...,M−1,

(1)
where sk(t) is the kth source signal, nm(t) is the noise
observed at mth sensor and τm(θk, φk) is the relative delay.
The sampled signal at the mth sensor is decomposed into N
narrowband components, Xm(fn), n = 0, 1, 2, ..., N − 1. We
can express (1) in the frequency domain as

Xm(fn) =

K∑
k=1

Sk(fn)e
−j2πfnτm(θk,φk) +Nm(fn), (2)

where Sk(fn) is the nth frequency component of the source
signal sk(t) and Nm(fn) is the nth frequency component of
the noise nm(t). In matrix vector form (2) is expressed as

x(fn) = A(θ, φ, fn)s(fn) + n(fn), (3)

where A(θ, φ, fn) = [a(θ1, φ1, fn), a(θ2, φ2, fn), ...,
a(θK , φK , fn)] is the full-rank M × K matrix of location
vectors. The steering vectors a(θk, φk, fn) of mth sensor at
frequency fn can be expressed as

am(θk, φk, fn) = ej2πfn
R
λ sin (θk) cos (

2πm
M −φk). (4)

It is assumed that the signal and noise samples are inde-
pendent identically-distributed (i.i.d.) sequences of complex
Gaussian random vectors with unknown source and noise
covariance matrices, Rs(fn) and σ2I, respectively. With these
assumptions, the covariance matrix of the observation vector
at the frequency fn is given by

Rx(fn) = A(θ, φ, fn)Rs(fn)A
H(θ, φ, fn) + σ2I, (5)

where superscript H denotes Hermitian transpose - that is,
transpose conjugate.

III. COHERENT SIGNAL SUBSPACE METHOD (CSSM)

Before we present our CSSM-AV based approach it is
essential to introduce the theoretical background of the pre-
processing step of the CSSM algorithm [8]. The main idea
is to demonstrate on how to combine the signal-subspace
at different frequencies with the objective to generate a sin-
gle signal subspace that is representative of all the sources
and angle of arrivals. For notational simplicity, we drop the
frequency, angles of elevation and azimuth variables and
represent A(θ, φ, fn) by An, x(fn) by xn and so forth. The
new observation vector yn, as discussed in [8], can be written
as

yn = Tnxn, (6)



where the Tn’s are called the focusing matrices. The idea is
to align or focus the signal space at all frequency bins into a
common bin at a reference frequency, f0 such that

TnAn = A0, n = 0, ..., N − 1, (7)

note that T0 is the identity matrix, I.
The focusing matrices, Tn, n = 0, ..., N − 1, are selected

from
min
Tn
||A0 −TnAn||,

subject to TH
n Tn = I,

(8)

where || · || is the Frobenius matrix norm. The solution to this
minimization is given by [12],

Tn = VnW
H
n , (9)

where Vn and Wn are the left and the right singular matrices
of A0A

H
n . One of the most challenging issues in the coherent

signal-subspace method is the choice of the best focusing
frequency, f0, to decrease the estimation bias. We use the
method described by Valaee and Kabal in [13], which has
been shown to be the optimal method for the selection of
focusing subspace selection in the CSSM algorithm. Initial
DOA estimates are required to compute the focusing matrices.
Obviously, a bad estimate will affect the system’s performance.
In practice, the unknown covariance matrix is estimated by
the sample covariance matrix using transformed observation
vectors, yn at the nth frequency bin

R̂y(fn) =
1

L

L∑
i=1

{
yny

H
n

}
, (10)

where L is the number of snapshots. An average of these
aligned sample covariance matrices gives a universal sample
covariance matrix, which is expressed as

Ry =
1

N

N∑
n=1

R̂y(fn) (11)

that can be used for DOA estimation. After estimating the
universal covariance matrix Ry’s we are ready to apply them
to the proposed CSSM-AV algorithm.

IV. SUBSPACE AUXILIARY-VECTOR ALGORITHM

Having the covariance matrix Ry , we present noneigen-
vector basis that spans the signal subspace extended in di-
mension by the DOA scanner vector sθ,φ, θ ∈ (0◦, 90◦) and
φ ∈ (0◦, 360◦). For the notation simplicity, we can fix the
azimuth angle, φ and scan in the direction of elevation, θ by
scanning vector, sθ. According to the work in [11], the initial
basis vector, v0(θ) is defined as

v0(θ) ,
Rysθ
‖Rysθ‖

. (12)

Having defined v0(θ), the auxiliary vector, g1(θ) is deter-
mined by maximizing the magnitude of the statistical cross-
correlation between the vH0 (θ)yn and gH1 (θ)yn, subject to the

orthonormality constraints gH1 (θ)v0(θ) = 0 and gH1 (θ)g1 =
1, as follows:

g1(θ) = argmax
g1(θ)

gH1 (θ)v0(θ)=0,‖g1(θ)‖=1

∣∣E {vH0 (θ)yny
H
n g1(θ)

}∣∣
= argmax

g1(θ)

gH1 (θ)v0(θ)=0,‖g1(θ)‖=1

∣∣vH0 (θ)Ryg1(θ)
∣∣. (13)

The solution to this constrained optimization problem is ob-
tained as

g1(θ) =

(
I− v0(θ)v

H
0 (θ)

)
Ryv0(θ)∥∥(I− v0(θ)vH0 (θ)
)
Ryv0(θ)

∥∥ . (14)

The recursion for k = 2, 3, ...,K − 1 orthonormal auxiliary
vectors can be shown as in [11] to be

gk(θ) =

(
I−

∑k−1
i=k−2 gi(θ)g

H
i (θ)

)
Rygk−1(θ)∥∥∥(I−∑k−1

i=k−2 gi(θ)g
H
i (θ)

)
Rygk−1(θ)

∥∥∥ , (15)

where g0(θ) = v0(θ). Then the Kth unnormalized auxiliary
vector gK(θ) is expressed as

gK(θ) = −µK−1(θ)

(
I−

K−1∑
i=K−2

gi(θ)g
H
i (θ)

)
RygK−1(θ),

(16)
where

µk(θ) = −µk−1(θ)
gHk (θ)Rygk−1(θ)

gHk (θ)Rygk(θ)
, k = 2, 3, ...,K − 1.

(17)
After the computation of the K orthogonal auxiliary-vector
basis {v0(θ),g1(θ), ...,gK(θ)} the DOA estimation procedure
is done as follows. Define θ(n) = n4◦, where n = 1, 2, ..., 90

◦

4◦

and 4◦ is the angle search step size in degrees and, without
loss of generality, assume 90◦/4◦ is an integer. We can form
a subspace matrix, S(θ(n)) as,

S(θ(n)) =
[
v0(θ

(n)),g1(θ
(n)), ...,gK(θ(n))

]
. (18)

Finally, using (16) and (18) the DOA estimation is computed

PAV (θ
(n)) =

1∥∥gHK(θ(n))S(θ(n−1))
∥∥ , n = 2, 3, ...,

90◦

4◦
.

(19)

V. COMPLEXITY ANALYSIS

In Table I, we present the computational complexity anal-
ysis for CSSM, TOPS, WAVES and the proposed CSSM-AV
algorithm, discussed in Section IV. As we can see, CSSM,
and TOPS algorithms have a high computational complexity
O(M3), where M is the number of antenna elements. Since
both CSSM and TOPS algorithms algorithms need matrix
inversion and eigen-decomposition. The computational com-
plexity of the WAVES algorithm, on the other hand, depends
on L narrowband snapshots, N frequency subbands (i.e., NL
number of wideband samples) and on M . Therefore, for the
number of wideband samples being less than the number of an-
tenna elements (i.e., NL < M ) the computational complexity



Table I
COMPUTATIONAL COMPLEXITY COMPARISON

Algorithms Complexity Main procedures

CSSM O(M3) Eigen-decomposition (grid search)

TOPS O(M3) Eigen-decomposition

WAVES O(NM2L) Eigen-decomposition

Proposed CSSM-AV O (360◦(90◦/4◦)KM2) Construction of signal subspace (grid search)

of the WAVES algorithm is relatively smaller compared to the
CSSM and TOPS algorithms. The computational complexity
of the proposed CSSM-AV algorithm is O(KM2) per test
angle or O (360◦(90◦/4◦)KM2). In comparison to all of
the above algorithms the proposed CSSM-AV algorithm is
less costly; especially, when the number of signals arriving on
the antenna element is much less than the number of antenna
elements. The inherit benefit of the proposed algorithm lies in
the fact that it does not require eigen-decomposition, which
has a O(M3) computational complexity.

VI. PERFORMANCE EVALUATION

In this section, we present computer simulation results using
MATLAB to demonstrate the effectiveness of the proposed
method in the 2-D DOA estimation of coherent wideband
signals. We evaluate the performance of four methods: the
proposed CSSM-AV, TOPS, WAVES and CSSM. The follow-
ing simulation constraint condition are made for the tests;
i.e., seven-sensor uniform circular array with radius of R =
λ/100 are made. This distance is smaller than traditional
λ/2 distance. Three far-field uncorrelated, and equipowered
with wideband sources are placed at θ = 10◦, 14◦, 45◦, and
φ = 23◦, 23◦, 23◦, where θ and φ are the elevation and
azimuth angles, respectively. The wideband source signal are
generated using some of sinusoids with random magnitude and
random phase,

s(t) = a(t)

N∑
n=1

ej(2πfnt+φn), (20)

where the amplitude a(t) is Rayleigh random variable and the
phase φn is uniformly distributed in [−π, π]. The sampling
frequency is three times the highest frequency. The sensor
output was divided into L = 100 snapshots and each snapshots
is N = 256 samples, which are converted to frequency domain
by a 256-point DFT. The statistical performance was evaluated
by performing Monte Carlo runs for each scenario.

First, we would like to demonstrate DOA performance for
the proposed CSSM-AV and the conventional CSSM method,
latter is based on the MUSIC algorithm. In Figs. 1 and 2, we
plot the signal output power of the CSSM algorithm and the
proposed wideband DOA estimation algorithm, respectively.
The number of angle of arrivals, K = 2, θ = 10◦, 36◦,
and φ = 20◦, 44◦. As we can see from Figs. 1 and 2 the

conventional CSSM and the proposed CSSM-AV algorithms
can clearly detect the angle of elevation and azimuth.

Figure 1. Output power of the CSSM algorithm versus azimuth and elevation.

Figure 2. Output power of the proposed CSSM-AV wideband DOA
estimation algorithm versus azimuth and elevation.

For the sake of presentation purposes we can show the DOA
performance by fixing azimuth angle (φ) and focus on the



elevation angles (θ). Therefore, in Fig. 3, we plot the power
versus elevation. The three angle of arrivals are set at 10◦, 14◦

and 45◦ with azimuth fixed at 23◦, 23◦ and 23◦, respectively.
The SNR is set to 13dB. In this specific example, radius R =
0.9λ. We can see that all of the four algorithms are able to
detect the elevation angles. However, as we can observe the
TOPS algorithm may require higher power compared to the
rest.
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Figure 3. Output power versus elevation (azimuth is fixed, angle separation
4◦).

In Fig. 4, we plot the signal output power of the algorithm
as a function of angle of arrival. The SNR is set to 5dB. The
first two angle of arrivals are set at 10◦ and 14◦, i.e., with
very close angle of arrival separation, 4◦. We can observe that
when the two angle of arrivals are very closed together, i.e.,
4◦, the TOPS algorithm fails to accurately detect the angle
of arrivals. The proposed CSSM-AV algorithm has slightly
better performance compared to both conventional CSSM and
WAVES algorithms, which have similar performance.

The probability of resolution is the probability that the
algorithm can identify the two closely separated transmitters
located at close elevations. In Fig. 5, we plot the probability
of resolution versus SNR for the different algorithms. The
transmitters are located at elevations of 10◦ and 12◦, respec-
tively. The azimuth is fixed at 23◦, while the elevations are set
at 10◦, 12◦, and 45◦. We can observe that TOPS is inferior
in performance compared to the rest. While the WAVES and
CSSM algorithms can work well at slightly higher SNR regime
compared to the proposed algorithm. The proposed CSSM-
AV algorithm has stronger resolution capabilities even for low
SNR regime, i.e., it can perform well even when the SNR is
as low as 5dB.

In Fig. 6, we plot the root-mean-square error (RMSE) versus
SNR (elevation is fixed, angle separation 2◦). We can see that
TOPS is the least competitive in performance followed by
the WAVES algorithm. CSSM has similar RMSE performance
compared to the proposed CSSM-AV and it slightly outper-
forms CSSM-AV at a few instances in lower SNR regime,
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Figure 4. Output power versus elevation (azimuth is fixed, angle separation
4◦).
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Figure 5. Probability of resolution versus SNR (azimuth is fixed, angle
separation 2◦).

while the performance of WAVES is slightly worse than the
CSSM.

In Fig. 7, we plot the probability of resolution versus
number of samples (for the two DOA separation 10◦ and
12◦). The azimuth is fixed at 23◦, while the elevations are
set at 10◦, 12◦, and 45◦. We can observe that TOPS is worst
in performance while the WAVES and CSSM algorithms can
work well in slightly higher number of samples compared to
the proposed algorithm. On the other hand, as we can see the
CSSM-AV algorithm is slightly better than CSSM in resolution
capabilities even for low number of samples.

In Fig. 8, we plot the RMSE versus number of samples
(elevation is fixed, angle separation 2◦). We can see that TOPS
is the least competitive in performance followed by WAVES
then CSSM algorithms. Both CSSM and WAVES algorithms
perform slightly worse than the proposed CSSM-AV algorithm
in terms of RMSE for different number of samples.
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Figure 6. RMSE versus SNR (elevation is fixed, angle separation 2◦).
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Figure 7. Probability of resolution versus number of samples (azimuth is
fixed, angle separation 2◦).

VII. CONCLUSION

In this paper, we proposed a 2-D DOA estimation scheme
for coherent wideband source signals using coherent signal
subspace method based auxiliary vector basis. The proposed
CSSM-AV method is superior in terms of computational
complexity compared to other competing subspace methods
such as CSSM, TOPS and WAVES algorithms that are heavily
dependent on decomposition techniques, while the proposed
method does not require eigen-decomposition. We also showed
through simulation results that the proposed method has favor-
able resolving capabilities compared to the other competing
algorithms (e.g. TOPS, CSSM and WAVES algorithms) even
when the two arrival signal angle separations are small (e.g.,
2◦) and even when the number of samples is low. The proposed
algorithm is shown to have similar resolving capabilities com-
pared to the CSSM algorithm, although the proposed algorithm
outperforms in terms of computational cost for scenarios in
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Figure 8. RMSE versus number of samples (elevation is fixed, angle
separation 2◦).

which many sources are present in the system, the array size
is large and the number of samples is small.
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