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Abstract—In this paper, we investigate the sequence estimation
problem of faster-than-Nyquist (FTN) signaling as a promising
approach for increasing spectral efficiency (SE) in future commu-
nication systems. In doing so, we exploit the concept of Gaussian
separability and propose two probabilistic data association (PDA)
algorithms with polynomial time complexity to detect binary
phase-shift keying (BPSK) FTN signaling. Simulation results
show that the proposed PDA algorithm outperforms the recently
proposed SSSSE and SSSgbKSE algorithms for all SE values
with a modest increase in complexity. The PDA algorithm ap-
proaches the performance of the semidefinite relaxation (SDRSE)
algorithm for SE values of 0.96 bits/sec/Hz, and it is within the
0.5 dB signal-to-noise ratio (SNR) penalty at SE values of 1.10
bits/sec/Hz for the fixed values of β = 0.3.

Index Terms—Faster-than-Nyquist (FTN) signaling, intersym-
bol interference (ISI), Mazo limit, sequence estimation.

I. INTRODUCTION

IMPROVING spectral efficiency (SE) is one of the key
requirements of future communication systems. Faster-

than-Nyquist (FTN) signaling is a promising physical layer
transmission technique for increasing SE of future commu-
nication systems compared to conventional Nyquist signaling
[1]. The basic idea of FTN signaling is to transmit the time
domain pulses with a rate that exceeds the Nyquist limit,
which intentionally creates inter-symbol interference (ISI) at
the receiver side. Interestingly, J. Mazo in 1975 showed
that transmitting time domain pulses every 0.802 T , where
T is the symbol duration, results in the same minimum
Euclidean distance (and, hence, the same error probability)
as conventional Nyquist signaling [2]. This is equivalent to
a 25% increase in SE for the same energy per symbol and
transmission bandwidth. The concept of FTN signaling has
been extended to different domains, e.g., frequency-domain
[3], non-binary modulation [4], other pulse shapes [5], to name
a few. Recent research results extended the concept of FTN
signaling to different domains and suggested that it can be a
promising candidates for high capacity peer-to-peer links.

Given that optimal detection of FTN signaling is shown to
be NP-hard [6], several linear/nonlinear detection techniques
have been developed to remove ISI with different degrees
of computational complexity [1]. For high spectral efficiency
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systems, i.e., severe ISI, M-Bahl, Cocke, Jelinek, and Raviv
(M-BCJR) algorithm [7] and the truncated Viterbi algorithm
[8] are examples of nonlinear detectors that have shown SE
gains; however, this has included exponential complexity in ISI
length. It is worth mentioning that iterative detection of FTN
signaling was shown to be effective in approaching the zero-
ISI performance at high signal-to-noise ratio (SNR) values
in [1], [9]. To achieve moderate SE gains with reasonable
detection complexity, nonlinear FTN signaling detection algo-
rithms based on semi-definite relaxation were proposed in [10]
for high-order modulations with polynomial time complexity.
A low-complexity nonlinear frequency domain equalizer was
proposed in [11]; however, it is found that the insertion of the
cyclic prefix could result in performance loss for short block
transmissions. The authors in [12] proposed a linear algorithm
that exploits the structure of ISI at the receiver and detects FTN
signaling on a symbol-by-symbol basis. It was shown in [12]
that the proposed algorithm is suitable for low ISI scenarios.

In this paper, we exploit the concept of Gaussian sep-
arability to propose relatively low-complexity probabilistic
data association (PDA) algorithms to detect binary phase-shift
keying (BPSK)1 FTN signaling at polynomial time complexity.
The proposed algorithms are iterative, i.e., at each iteration a
given FTN signaling symbol is detected to improve the overall
error performance. Simulation results show the effectiveness of
the proposed algorithms and their merit over other competing
schemes in the literature. The proposed algorithms outper-
form the successive symbol-by-symbol sequence estimation
(SSSSE) and successive symbol-by-symbol with go-back-K
sequence estimation (SSSgbKSE) algorithms in [12] for all
SE values. Additionally, the proposed algorithms approach the
performance of the semidefinite relaxation (SDRSE) algorithm
proposed in [10] for SE values of 0.96 bits/sec/Hz, and they are
within 0.5 dB SNR penalty at SE values of 1.10 bits/sec/Hz.

The remainder of this paper is organized as follows. Sec-
tion II presents the FTN signaling system model and the linear
separability concept. The concept of Gaussian separability
and the proposed PDA algorithms are presented in Section
III, while the simulation results are discussed in Section IV.
Finally, the paper is concluded in Section V.

The following notations are used in this paper. All boldface
lower case letters indicate column vectors, and upper case
letters indicate matrices. Additionally, (·)H denotes Hermi-
tian operation, sgn(·) denotes the sign function, | · | is the
scalar magnitude, var[·] is variance, cov[·] denotes covariance,
diag[·] denotes a matrix with diagonal elements, and E{·}

1The proposed algorithms can be straightforwardly extended to quadrature-
phase-shift keying (QPSK).
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denotes the expected value.

II. FTN SIGNALING SYSTEM MODEL

At the FTN signaling transmitter, the BPSK data symbols
are shaped by a unit-energy pulse p(t). We transmit a total
of N symbols at every τT , where τ ∈ (0,1] is the time
packing parameter. The received signal, after being affected
by an additive white Gaussian noise (AWGN) channel, passes
through a filter matching the transmit pulse and is given as

y(t) =
√
τ Es

∑N

n=1
ang(t − nτT) + q(t), (1)

where an, n = 1, . . . ,N, is the BPSK data symbol, Es is the data
symbol energy, g(t) =

∫
p(x)p(x − t)dx, q(t) =

∫
n(x)p(x −

t)dx, where n(t) is the AWGN with zero mean and variance
σ2, and 1/(τT) is the signaling rate. The output signal of the
matched-filter is sampled at every τT and can be expressed as

yk =
√
τ Es

∑N

n=1
ang(kτT − nτT) + q(kτT),

=
√
τ Es ak g(0)︸           ︷︷           ︸
desired symbol

(2)

+
√
τ Es

∑N

n=1, n,k
an g((k − n)τT)︸                                       ︷︷                                       ︸

ISI

+ q(kτT).

We rewrite (2) in a vector form as

yc =
√
τ Es a ∗ g + qc, (3)

where a, g, qc , and ∗ are the transmit data symbol vector,
ISI vector, colored noise vector, and convolution operator,
respectively. Since the noise samples are correlated, we design
a whitening matched filter by applying spectral factorization to
the z-transform of g to obtain the approximate whitening filter
coefficients. For more details on the design of such filters for
FTN receivers, we refer the reader to [8], [10]. Hence, after
passing (3) through the whitening filter, we have

y =
√
τ Es a ∗ v + nw, (4)

where nw is AWGN ∼ N(0, σ2) and v is the causal ISI vector
and is constructed from g as v[n] ∗ v[−n] = g. Equation (4)
can be rewritten as

y = Ga + nw, (5)

where G is an N ×N Toeplitz Gram matrix that represents the
ISI. The maximum likelihood sequence estimation (MLSE)
problem for detecting the FTN signaling in (5) is formally
expressed as

â = argmin
a∈{±1}N×1

aHGa − 2yHa. (6)

It is known that obtaining the MLSE solution is generally
NP-hard [6], which may be prohibitively complex for use in
practical detectors. That being said, finding low-complexity
optimal detectors of FTN signaling is important for improving
SE in future communication systems.

In this work, we aim to identify what properties the ISI
matrix G needs to have such that the sequence estimation
can achieve asymptotically zero probability of error detection.
In [12], the authors exploit the idea of linear separability to

identify an operating region where perfect reconstruction of
FTN signaling is guaranteed for noise-free transmission. It was
found that such a linear separability operating region depends
on the raised cosine pulse shape, its roll-off factor β, and
the FTN signaling time acceleration parameter τ. The perfect
reconstruction conditions of the BPSK FTN signaling in [12]
can be summarized in the following lemma.

Lemma 1: [12] We assume perfect estimation conditions
for BPSK FTN signaling over the noise-free transmission.
Regardless of the value of the current data symbol ak , the
upcoming L − 1 data symbols ak+1, ...,ak+L−1, and the value
of L, the following inequality holds for a certain range of τ
and β:

|G1,1ak | > |G1,2ak+1 + . . . + G1,Lak+L−1 |, (7)

where Gi, j is the i-th row and j-th column value of the
ISI matrix G. Following (7), in this work, we define the
conditionally linear margin as

δk = |G1,1ak | − |G1,2ak+1 + . . . + G1,Lak+L−1 |, (8)

which can be seen that δk > 0 is equivalent to Lemma 1
and it is the sufficient and necessary condition for linear
separability. Therefore, the linear margin, δk , represents a
distance measure for the separability condition of Lemma 1
to hold. Obviously, the greater the linear margin δk , the better
the error performance.

III. PROPOSED DETECTION ALGORITHMS

In this section, low-complexity iterative detectors are pro-
posed to detect FTN signaling on the basis of Gaussian sepa-
rability [13]. We show that Gaussian separability has a greater
classification margin compared to the linear separability in
[12], which thereby improves the detection error performance
of FTN signaling. To illustrate the idea, let us define a subset
F ⊂ U = {1,2, . . . ,N} of the symbols that are already
detected, i.e., {al = a∗

l
, l ∈ F }. To detect the k-th symbol

k ∈ U−F , we should be able to separate the set of undetected
symbols in U−F in two groups corresponding to ak = 1 and
ak = −1, respectively. Following this notation, the observation
vector y in (5) is rewritten as

y = gkak + µ∗F + µFk + nw, (9)

where gk is the k-th column of ISI matrix G = [g1,g2, . . . ,gN ],
µ∗
F
=

∑
l∈F gla∗l and µFk =

∑
j∈U−F−k gjaj . Linear detectors

can be viewed as hyperplanes on the subspace spanned by gk
for 1 ≤ k ≤ N columns of matrix G. A linear detector that
achieves asymptotic negligible error probability as σ2 → 0 is
said to be asymptotically efficient. Mathematically, it can be
expressed as, ∀aj ∈ {±1}, j ∈ U − F − k,

cHy ≥ 0 if ak = 1
cHy < 0 if ak = −1.

From this definition of linear separability, the following theo-
rem can be proved.

Theorem 3.1: [14] The k-th symbol is asymptotically
linearly separable conditionally on F if for σ2 → 0, an N-
dimensional linear filter c,

|cHgk | >
∑

j∈U−F−k

|cHgj |. (10)
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It can be shown that Lemma 1 is a special case of Theorem
3.1 when the linear filter c = ek in (10), where ek is a vector
with value 1 at position k and 0 in all other positions under
the constraint that data symbols ak ∈ {±1}, ∀k.

TABLE I: Symbol-by-symbol Separability (β = 0.3)

τ 0.6 0.7 0.8 0.9

δmax , δave 0.97, 0.11 0.97, 0.20 0.97, 0.38 0.97, 0.53

TABLE II: Gaussian Separability (β = 0.3)

SNR (dB) τ = 0.6 0.7 0.8 0.9

0 0.00, 0.00 1.16, 0.49 1.08, 0.58 1.02, 0.73
2 2.01, 0.68 1.84, 0.82 1.71, 0.96 1.62, 1.21
4 3.19, 1.12 2.92, 1.35 2.71, 1.57 2.56, 2.00
6 5.06, 1.73 4.62, 2.16 4.29, 2.55 4.06, 3.30
8 8.02, 2.71 7.32, 3.45 6.80, 4.13 6.43, 5.42

Recall that if the condition densities for all the symbols
f(y|aj) are Gaussian then the optimal filter for user-k is a
scaled version of e.g., ck , R−1

Fk
gk . The solution of the optimal

separating hyperplane in a linear detector (classifier), despite
the simple formulation, may be very difficult when the classes
do not follow a Gaussian distribution. If we assume that the
ISI is Gaussian, then the linear classifier becomes the optimal
maximum likelihood (ML) decision with hyperplanes dividing
the N-dimensional space.

Theorem 3.2: [14] The k-th symbol is a Gaussian separable
conditionally on F if for σ2 → 0,

gH
k R−1

Fk
gk >

∑
j∈U−F−k

|gH
k R−1

Fk
gj |, (11)

where
RFk =

∑
j∈U−F−k

gjgH
j + σ

2IN , (12)

and the parameter

∆Fk = gH
k R−1

Fk
gk −

∑
j∈U−F−k

|gH
k R−1

Fk
gj | (13)

is called conditionally Gaussian margin. Unlike the linear
margin δk , the Gaussian margin ∆Fk value depends on the
noise variance σ2. We measured conditionally margins, δk and
∆Fk , in the operating region, where ISI matrix G is formed
with roll-off factor β = 0.3 and τ ∈ {0.6,0.7,0.8,0.9}. At
each pair of β, τ, we generate matrix G and then compute
δk and ∆Fk for 1 ≤ k ≤ N using equations (8) and (13)2,
respectively. We evaluate their maximum and average values as
δmax = argmaxk δk , δave = 1

N

∑N
k=1 δk , ∆max = argmaxk ∆Fk ,

∆ave =
1
N

∑N
k=1 ∆Fk .

Since the linear margin δk does not depend on the noise
variance, σ2, there is only one row with values (δmax , δave)
as shown in Table I. On the other hand, Table II shows the
(∆max , ∆ave) for different SNR values at each row, where
we vary the noise variance, σ2, and keep the matrix G
unchanged. We observe from Table I and Table II that the

2We note that ∆Fk is computed using the following set F =
{i1, i2, . . . , ik−1 } for 1 ≤ k ≤ N . The order of {i1, i2, . . . , ik−1 } depends
on the ISI matrix G and it ’s are precisely computed in our PDA algorithm
at line 6.

Gaussian classification margins have greater maximum and
average values than their linear counterparts. Therefore, we
can theorize that using a Gaussian classification margin can
potentially improve the performance in terms of bit error rate
(BER).

The main idea of the PDA detection algorithm is based on
conditionally Gaussian separability criterion and the fact that
the Gaussian margin ∆Fk is greater than the linear margin δk ,
as shown in Tables I and II. One can re-express (9) as

y = gkak + wk, (14)

where wk = Gkak + nw, Gk is the N × N − 1 resulting matrix
after excluding the k-th column of G, and ak is N − 1 × 1
vector resulting after excluding k-th element of a.

We associate the probabilities Pa(k) and 1−Pa(k) with the
estimate of the symbols ak = 1 and ak = −1, respectively.
Now, for an arbitrary symbol ak , we treat the other symbols
aj , ∀ j , k as binary random variables and wk as a Gaussian
noise vector. Then the likelihood ratio for the ak symbol can
be written as

Λ(ak) =
P{ak = 1|y, {Pa( j)}j,k}

P{ak = −1|y, {Pa( j)}j,k}
,

=
fy(y|ak = 1|, {Pa( j)}j,k)
fy(y|ak = −1, {Pa( j)}j,k)

(15)

=
N(y|gk + µk,Ck)

N(y|gk − µk,Ck)

= exp
[
2(y − µk)

HC−1
k gk

]
, (16)

where Pa(k) = P{ak = 1|y, {Pa( j)}j,k} and fy is the multi-
variate Gaussian distribution conditioned on {y, {Pa( j)}j,k}.
The covariance can be calculated as

Ck = cov[wk]

= GkE[akaH
k ]G

H
k −GkE[ak]E[aH

k ]G
H
k + Rn

= GkCak GH
k + Rn, (17)

where var[ak] = 4Pa(k)(1 − Pa(k)), Cak = cov[ak] =
diag(var[a1], · · · ,var[ak−1],var[ak+1], · · · ,var[an]) and Rn =

E[nwnH
w ], are the covariance matrix of ak and the autocorre-

lation of noise vector, respectively. The knowledge about the
ak symbol is carried over in each iteration through a dynamic
update of means and covariances as follows

µk = E[wk] = E[Gkak + nw] = GkE[ak]

= Gk



2Pa(1) − 1
...

2Pa(k − 1) − 1
2Pa(k + 1) − 1

...
2Pa(N) − 1


= Gkpa,k, (18)

where pa,k is the estimated a signal vector without the k-th
signal. As we can see, the likelihood ratio in (15) is in the
form of Pa(k)/(1 − Pa(k)) = exp(x). Hence, the posteriori
probability Pa(k) can be calculated as

Pa(k) = 1/
(
1 + exp

[
−2(y − µk)

HC−1
k gk

] )
. (19)
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Proposed PDA Algorithm

Input: y, F ← {1,2, . . . ,N}, M
1: Initialize : Pa(k) = 1/2, k = 1, . . . ,N
2: Compute Dk , k = 1, · · · ,N
3: for i = 1 to M
4: U ← F

5: while (U , ∅)
6: Update Pa(km), km = argmaxk∈U(Dk)

7: Subtract km from U
8: Recompute Dk , ∀k ∈ U

Output: â = sgn (pa)

That being said, the proposed PDA algorithm for detecting
FTN signaling can be summarized in the next page, where M
is the number of iterations and Dk = gH

k
C−1
k

gk .
A. Modified PDA algorithm

The complexity of the PDA algorithm can be further re-
duced if the detected data symbols whose probabilities lie
within a confidence interval are removed in each iteration. In
other words, if the probability of the symbol k, Pa(k) lies in
confidence region ε , if |Pa(k) − d | < ε , where d = {0,1}. All
the symbols that satisfy the confidence interval define the set
C. We assign Pa(k) = {d : |Pa(k) − d | < ε} for ∀k ∈ C. Next,
we remove symbols C from F , F = F − C. The modified
PDA algorithm is presented next.

Modified PDA Algorithm

Input: y = Ga + n, F ← {1,2, . . . ,N}, M
1: Initialize Pa(k) = 1/2, k = 1, · · · ,N
2: Compute Dk , k = 1, . . . ,N
3: for i = 1 to M
4: Find k that satisfy |Pa(k) − d | < ε
5: if C , ∅
6: Pa(k) = d, ∀k ∈ C
7: F ← F − C

8: U ← F

9: while (U , ∅)
10: Update Pa(km), km = argmaxk∈U(Dk)

11: Subtract km from U
12: Recompute Dk , ∀k ∈ U

Output: â = sgn (pa)

B. Complexity analysis

The main complexity of the proposed PDA algorithm lies in
updating C−1

k
in (19). However, efficient numerical techniques

such as the Durbin-Levinson algorithm can exploit the Toeplitz
structure of Ck and compute its inverse, i.e., C−1

k
, with a

complexity of O(N2) [15]. However, since Ck is not always
guaranteed to be Toeplitz, the calculations of C−1

k
can be

in the order of O(N3). Since evaluating (19) is expected to
occur at most N times and the algorithm has deterministic
execution steps, the total average and worst case computational
complexity of the proposed PDA algorithm can be in the
order of O(N4). The PDA algorithm has the same polynomial
complexity order (i.e., both complexities scale in polynomial
time with the number of transmit symbols) as the SDRSE
algorithm in [10] (please note that complexity measure based
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Fig. 1: BER performance of BPSK FTN signaling as a function of
Eb
No

using the proposed PDA algorithm, SSSSE [12], SSSgbKSE [12],
and the SDRSE [10], at β = 0.3 and τ = 0.8, SE = 0.96 bits/sec/Hz.

on the number of operations depends mainly on hardware
implementations and is outside the scope of this work), while
it has higher complexity compared to the work in [12].

IV. SIMULATION RESULTS

In this section, we assess the performance of our proposed
algorithms for detecting BPSK FTN signaling with a root-
raised cosine (rRC) pulse and roll-off factor of β = 0.3.
Simulations were performed over the AWGN channel, both
with and without channel encoding. The iteration number for
proposed PDA is 8 for all cases and the number of iterations
we averaged the simulations over are 50,000 and 5,000 for
uncoded and coded cases, respectively.

Figure 1 depicts the BER of BPSK FTN signaling as a
function of Eb

No
for the proposed PDA algorithm, comparing it

with the SSSE and SSSgbKSE (K = 3) algorithms presented in
[12], the SDRSE algorithm in [10], and the frequency domain
equalizer (FDE) in [11] for β = 0.3 and τ = 0.8, i.e., a SE of
0.96 bits/sec/Hz. The SE is calculated as log2 M

(1+β)τ , where M is
the constellation size and the SE loss due to adding the cyclic
prefix in the FDE in [11] is not considered. As we can see,
the proposed PDA algorithm approaches the performance of
the SDRSE algorithm in [10] and outperforms the works in
[11], [12] for SE value of 0.96 bits/sec/Hz.

Figure 2 plots the BER of the BPSK FTN signaling as a
function of Eb

No
for the proposed PDA algorithm, the SSSSE

and SSSgbKSE (K = 3) algorithms in [12], and the SDRSE
algorithm in [10] for β = 0.3 and τ = 0.7, i.e., a SE of
1.10 bits/sec/Hz. As we can see in Fig. 2, the proposed PDA
algorithm’s performance is within almost 0.5 dB of the SDRSE
performance in [10], and it extensively outperforms the works
in [12] that fail at such value of SE. We observe in Fig. 3 of
our simulation for the confidence region ε = 0.4, the average
number of iteration steps reduces by around 30%. At higher
SNR values, we observe higher percentage of reduction in the
iteration steps.

We also performed the simulation using a low-density
parity-check (LDPC) and turbo codes. For implementation, we
used a custom parity based matrix generator for LDPC and
the long-term evolution (LTE) turbo channel codes described
in [16]. For both cases, we used 1/3 code rate channel coding
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Fig. 2: BER performance of BPSK FTN signaling as a function of
Eb
No

using the proposed PDA algorithm, SSSSE [12], SSSgbKSE [12],
and the SDRSE [10], at β = 0.3 and τ = 0.7, SE = 1.10 bits/sec/Hz.
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Fig. 3: BER performance for confidence region.

with an input message length of 320 and an output code
length of 972 for both LDPC and LTE turbo, respectively.
The construction of the LTE interleaver was based on the
quadratic permutation polynomial (QPP) scheme [16]. Figure
4 shows the BER performance for LDPC and turbo encoded
with τ = 0.7 and τ = 0.8. The BER performance of turbo
coded is better compared to LDPC in both cases. The SSSE
and SSSgbKSE are not included in the simulation results since
they do not produce soft outputs required by the LDPC and
turbo soft decoders.

V. CONCLUSION

Faster-than-Nyquist (FTN) signaling is a promising candi-
date for improving spectral efficiency (SE) in future com-
munication systems. In this paper, we showed that Gaussian
separability has a greater margin compared to linear sepa-
rability, which has been used recently in the detection of
FTN. In exploiting Gaussian separability, we proposed two
probabilistic data association (PDA) algorithms of polynomial
time computational complexity to detect binary phase-shift
keying (BPSK) FTN signaling. Simulation results showed that
the proposed algorithms outperform the successive symbol-by-
symbol sequence estimation (SSSSE) and successive symbol-
by-symbol with go-back-K sequence estimation (SSSgbKSE)
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Fig. 4: BER performance for LDPC and turbo encoding.

algorithms in [12] for all SE values. Additionally, they ap-
proach the performance the semidefinite relaxation (SDRSE)
algorithm in [10] for SE values of 0.96 bits/sec/Hz and they
are within the 0.5 dB signal-to-noise ratio (SNR) penalty at
SE values of 1.10 bits/sec/Hz.
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