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Abstract—An improved mean squared error (MSE) minimiza-
tion solution based on eigenvector decomposition approach is
conceived for wideband non-orthogonal multiple-access based
computation over multi-access channel (NOMA-CoMAC) frame-
work. This work aims at further developing NOMA-CoMAC for
next-generation multimodal sensor networks, where a multimodal
sensor monitors several environmental parameters such as tem-
perature, pollution, humidity, or pressure. We demonstrate that
our proposed scheme achieves an MSE value approximately 0.7
lower at Eb/No = 1 dB in comparison to that for the average
sum-channel based method. Moreover, the MSE performance
gain of our proposed solution increases even more for larger
values of subcarriers and sensor nodes due to the benefit of the
diversity gain. This, in return, suggests that our proposed scheme
is eminently suitable for multimodal sensor networks.

Index Terms—Non-orthogonal multiple-access (NOMA), com-
putation over multi-access channels (CoMAC).

I. INTRODUCTION

Internet of Things (IoT) networks are evolving towards
a wide range of applications, varying from e-health, au-
tonomous transmission systems and smart factories with ever
increasing data rate requirements and reduced latency [1].
Their energy efficiency also need to be high to extend the
battery lifetimes as much as possible. To further complicate
the design problem, the expanding number of applications
introduce an ever-increasing number of devices that need to be
serviced with the tight operational challenges. Unfortunately,
the conventional multiple access techniques, such as time-
division multiple access (TDMA), frequency division multiple
access (FDMA)/orthogonal FDMA (OFDMA) do not offer
such scalability [2].

A promising approach is to exploit the superposition prop-
erty of the wireless multiple access channel to perform some
of the functionalities associated with data collection from
the sensor nodes of the IoT networks over the air, while
transmitting simultaneously. This approach, referred to as
computation over multi-access channels (CoMAC), introduced
in [3], can realize a desired function of the distributed data
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over the wireless channel. Its extension to practically relevant
systems is later introduced in [4], and further developed in
[5]. In CoMAC, due to the simultaneous transmission of the
sensor nodes, the transmission times are scalable. Yet due
to the narrow transmission bandwidth of the classical Co-
MAC approach introduces limited performance improvement
in terms of the spectral efficiency. To improve the spectral
efficiency and overall IoT network throughput, a wideband
CoMAC is proposed in [6], integrated with the power do-
main non-orthogonal multiple-access (NOMA) technique. By
making use of NOMA-based computation over multi-access
channel (NOMA-CoMAC) technique, the authors show that
the computation rate can be improved. Yet, the optimization
of NOMA-CoMAC is not considered in the literature in terms
of obtaining the minimum mean square error (MMSE). It is
widely known that the MMSE performance can be improved
by optimizing the transmission, as shown for narrowband Co-
MAC in [7]. However, a wideband-CoMAC design approach
to obtain the MMSE solution has not been explored to the best
of our knowledge.

To address this gap in the literature, in this work we
introduce a mean squared error (MSE) minimization based
optimization problem of NOMA-CoMAC. Our contributions
are summarized as follows:
(1) We develop a MSE optimization criterion for the wide-

band NOMA-CoMAC framework.
(2) We propose an eigenvector-based solution to the MSE

optimization problem.
(3) We show through simulation studies that our proposed

scheme achieves around 0.7 lower at Eb/No = 1 dB in
terms of MSE performance compared to average sum-
channel based method.

The rest of the paper is organized as follows. In Section II,
we discuss the NOMA-CoMAC framework, the formulation
of MSE optimization problem and our proposed solution
approach. After illustrating simulation results in Section III,
main conclusions are drawn in Section V.

The following notations are used in this paper. All boldface
lower case letters indicate column vectors and upper case
letters indicate matrices, ()T denotes the transpose operation,
()H represents the conjugate transpose operation and E{·}
denotes the expected value.

II. SYSTEM MODEL

In this paper, we consider a fusion technique of the mul-
timodal sensing that aims to model context from different
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Fig. 1: System model CoMAC via NOMA network.

modalities effectively by entailing the combination of the het-
erogeneous sensors. The proposed multimodal sensing results
in achieving improved accuracy and more specific inferences
than could be achieved by the use of a single sensor alone [8].

Based on the multimodal sensing benefits, we study a
wireless sensor network consisting of K multimodal sensors
and a single access point (AP). At each node multimodal
sensors record the values of P heterogeneous time-varying
parameters of the environment, e.g., temperature, pollution,
humidity, or pressure. The measurement vector of the k-
th sensor node constitutes P sample values and is denoted
by sk = [sk,1, sk,2, . . . , sk,P ]T ∈ RP×1, where sk,p is the
measurement of the parameter p at the k-th sensor. Rather than
accumulating the multimodal data set, the AP aims at comput-
ing P functions of P corresponding measuring data types from
K sensor nodes, denoted by {hp(s1,p, s2,p, . . . , sK,p)}Pp=1. A
class of nomograpic functions of the distributed data can be
carried out quite efficiently with the aid of CoMAC.

Definition II.1. The function hp(s1,p, s2,p, . . . , sK,p) is de-
fined as nomographic, if there exist K preprocessing functions
gk,p(·) and a postprocessing function fp(·) such that it can be
represented in the form

hp(s1,p, s2,p, . . . , sK,p) = fp

(
K∑
k=1

gk,p(sk,p)

)
. (1)

By exploiting the fact that wireless sensor networks normally
aim to obtain a function value of sensor readings (e.g.,
arithmetic mean, geometric mean, etc.) instead of requiring
all readings from the sensors, CoMAC framework becomes
suitable for such computations. Motivated by this fact, we
propose a multimodal sensor network system for future IoT
networks based on CoMAC scheme over the NOMA chan-
nels, which is portrayed in Fig. 1. Explicitly, the readings
at each sensor nodes are preprocessed by specified func-
tions gk(·) = {gk,p(·)}, where gk,p(·) operates on sk,p and
gk(sk) = [gk,1(sk,1), gk,1(sk,1), . . . , gk,P (sk,P )]T . In prac-
tice, to be more resilient against noise, we encode the resultant
preprocessed vectors gk(sk) of length P by the nested lattice
codes to obtain x′k = [x′k,1, x

′
k,2, . . . , x

′
k,n]T ∈ Λn ⊂ Rn×1

[9] and denote x′[p] = [x′1,p, x
′
2,p, . . . , x

′
K,p]

T , as shown in
Fig. 1. We employ a filter Bk on x′k at each sensor node
with the objective of minimizing sum mean-squared error

of computed functions. Hence, each sensor node k transmits
xk through NOMA channel, as shown in Fig. 1. The main
objective of the AP characterizes in decoding the received
vector y = [y1, y2, . . . , yn]T into P desired functions (1). In
order to discuss our proposed optimization technique based on
MMSE criterion, we first present a transmitter model over the
NOMA channel, as discussed below.

A. NOMA Scheme
We consider a wideband NOMA scheme with N subcarrier

over Ts OFDM symbols for transmitting xk at each sensor
nodes. Due to fact that NOMA spreading waveforms are sparse
only part of the K sensor nodes participate in the computation
at each subcarrier. Thus, the desired functions fp(·) in (1) that
is composed of all K sensor nodes can be broken down into
subfunctions, as detailed in [6]. The subfunction is only part
of the desired function, which is computed by a subset of
K sensor nodes. Each subfunctions considers only M chosen
sensor nodes as a distinct subset of all K nodes. Therefore, the
desired function is split into B = K

M parts. In each subcarrier,
L subfunctions are chosen such that L = B

D , where D ∈ N.
The desired functions are reconstructed by these subfunctions
at the AP. Then, the m-th received OFDM symbol at AP can
be formulated as [6]

Y[m] =
L∑
l=1

K∑
k=1

Vl
k[m]Xl

k[m]Hk[m] + W[m], (2)

where m ∈ [1 : Ts], Ts = n
N , N is the number of subcarriers

and Ts is the number of OFDM symbols. The power allocation
matrix of the k-th sensor node is denoted as Vl

k[m] =
diag{vlk,1[m], . . . , vlk,N [m]}, whose diagonal element is the
power allocated to compute the l-th function at each subcarrier,
Xl
k[m] = diag{xlk,1[m], . . . , xlk,N [m]} is the transmitted diag-

onal matrix of the k-th sensor node to compute the l-th func-
tion, a diagonal matrix Hk[m] = diag{hk,1[m], . . . , hk,N [m]}
is the channel matrix in which the diagonal elements are
the channel response of each subcarrier for node k and the
diagonal element of W[m] is identically and independently
distributed (i.i.d.) complex Gaussian random noise. Due to
linearity and diagonal matrix structure, we re-write (2) as

Y[m] =
K∑
k=1

L∑
l=1

Vl
k[m]Xl

k[m]Hk[m] + W[m]. (3)
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Fig. 2: Framework of wideband CoMAC.

We define the combined matrix as follows:

Xk[m]
4
=

L∑
l=1

Vl
k[m]Xl

k[m], (4)

where Xk[m]=diag{xk,j1 [m]vk,j1 [m], . . . , xk,jT [m]vk,jT [m]},
jt ∈ {1, 2, . . . N}, t ∈ {1, 2, . . . , T}, jta 6= jtb , and T = LM .
The T chosen sensor nodes corresponds to the nodes with
the largest channel gains, e.g., |hj1 | ≥ |hj2 | ≥ · · · ≥ |hjT |.
We substitute (4) into (3) to obtain

Y[m] =

K∑
k=1

Xk[m]Hk[m] + W[m]. (5)

Since Xk[m] and Hk[m] are diagonal matrices for 1 ≤ k ≤
K, (5) can be expressed equivalently as

Y[m] =

K∑
k=1

Hk[m]Xk[m] + W[m]. (6)

For ease of transmission-power control and without loss of
generality, the m-th OFDM symbols are assumed to be nor-
malized to have unit variance, i.e., E{Xk[m]Xk[m]H} = IN
for ∀k and ∀m, where IN denotes the identity matrix of size
N by N . Ideally, we would like to receive X[m] as one-to-one
mapping expressed as

X[m] =
K∑
k=1

Xk[m]. (7)

The proposed optimization formulation is discussed in the
next section.

B. MMSE Filtering

We consider the joint optimization of transmit and receive
filtering under the MMSE criterion with the transmission
power constraints. Let A[m] ∈ CN×N denote the receiver
MMSE filtering matrix for m-th OFDM symbol at the AP
and Bk[m] ∈ CN×N the transmit MMSE filtering matrix at
sensor node k for m-th OFDM symbol. Let the m-th OFDM

symbol combined matrix notation in (4) be defined now as
X′k[m], since the k-th sensor node will apply MMSE filtering
on x′k instead of the xk, as in (2). Hence, the m-th OFDM
symbol received at AP can be expressed as

X̂[m] = A[m]H
K∑
k=1

Hk[m]Bk[m]X′k[m] + A[m]HW[m].

(8)

The distortion error between estimated X̂[m] and X[m],
which quantifies the over-the-air computation performance can
be measured by MSE defined as follows:

MSE(X̂[m],X[m])=E
{
tr(X̂[m]−X[m])(X̂[m]−X[m])H

}
,

(9)
where tr(·) denotes the sum of elements on the main diagonal
of the square matrix. For the sake of simplicity, we will drop
the m notation from our formulations but readers should bear
in mind that the formulation contains m, which refers to m-
th OFDM symbol. Substituting (8) and (7) into (9), the MSE
can be explicitly written as a function of the transmitter and
receiver MMSE filtering as follows:

MSE(A, {Bk}) =
K∑
k=1

tr(AHHkBk − I)(AHHkBk − I)H

+ σ2
ntr(A

HA), (10)

due to the fact that E{XkX
H
k } = IN . Our main objective in

(10) is to find the set of matrices A, {Bk} such that MSE is
minimized. Based on the widely known approach, we constrain
the matrix A to be orthonormal matrix. Furthermore, under the
MMSE criterion, a positive scaling factor η, called denoising
factor, is included in A for regulating the tradeoff between
noise reduction and transmission-power control. Define A =√
ηF with F being a tall unitary matrix and thus FHF = IN .

Then given the MSE in (10) the MMSE filtering problem can
be formulated as
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(P1) min
η,A,{Bk}

MSE(A, {Bk})

s.t. ||Bk||2 ≤ P0 ∀i
AHA = ηIN

(11)

The solution to (P1) can be shown to be A∗ =
√
η∗F∗,

B∗k = AH
k (AkA

H
k )−1 ∀k and η∗ = maxk

1
P0

tr(FkF
H
k )−1,

where Fk = (F∗)HHk, Ak = (A∗)HHk, and F∗ = VG

[10].
Let the effective channel coefficients matrix defined by G

as follows:

G =
K∑
k=1

λmin(Σ2
k)UkU

H
k , (12)

where Uk is the left matrix of singular value decomposition
(SVD) of Hk, namely Hk = UkΣkV

H
k and SVD of G is

defined as G = VGΣGVH
G .

C. Eigenvector-Based Approach
We consider an alternative solution of (P1) that is entirely

based on the largest eigenvectors of the sum-channel matrix.
Define the sum-channel matrix as

Hs =
K∑
k=1

Hk. (13)

The eigenvector-based solution can be achieved by A∗ = Q,
where Q is the eigenvector decomposition of Hs such that
Hs = QΛQ−1. Note that Hs and G in (12) are diagonal
matrices due to the fact that Hk is diagonal for 1 ≤ k ≤ K.
Hence, it can be shown that the obtained solutions A∗ are
also diagonal indeed. More explicitly, it is an identity matrix,
IN . We adopt the eigenvector-based approach as it is compu-
tationally less expensive to compute (13) than (12).

D. Channel Feedback Phase
The (P1) solution obtained requires perfect knowledge of

global channel state coefficients {Hk} to be available at all
K sensor nodes. The proposed channel training and feedback
mechanism, where we assume that the feedback observation
at the AP can be noiseless is represented by

Z =

K∑
k=1

HkDk ∈ CN×N , (14)

where Dk ∈ CN×N denotes the signal matrix transmitted by
the sensor node k. Let A∗ denoted the derived solution of (P1),
f̃(·) and g̃k(·) be the feedback counterparts of the pre- and
post-processing operations of f(·) and gk(·) for 1 ≤ k ≤ K.
One of the important design constraint is that the transmitted
signal Dk in (14) must be a function of Hk only, which we
denote it as Dk = g̃k(Hk). Furthermore, the optimization
problem can be formulated as

(P2) A∗ = f̃(
K∑
k=1

Hkg̃k(Hk)), (15)

and the problem of feedback design reduces to the design of
the functions f̃(·) and {g̃i(·)}. The solution is obtained when
Z = G. Therefore, the feedback signal solution is obtained as
D∗k = g̃k(Hk) = λmin(Σ2

k)VkΣ
−1
k UH

k and feedback post-
processing is F∗ = f̃(Z) = UZ , where UZ denotes the left
eigenvectors of Z.

III. SIMULATION RESULTS

In this section, we evaluate the performance of proposed
scheme via simulation studies. The MSE performance of (9)
are illustrated in Fig. 3 for NOMA system. In Fig. 3 (a), we
set N = 6 and vary K = 2, K = 5 and K = 8, where a1, a2
and a3 denote average sum-channel based, eigenvector-based
and effective channel based techniques, respectively. The MSE
is a decreasing function of Eb/No.

In addition, we observed that when K increases MSE
performance decreases further for the eigenvector-based and
effective channel based techniques but not for the average
sum-channel as portrayed in Fig. 3 (b). Similar results are
obtained for the fixed N = 12 and varying K = 8, K = 20
and K = 32 as shown in Fig. 3 (a). In Fig. 3 (c), we set K = 3
and vary N = 8, N = 20 and N = 32, respectively. We note
that increasing N does not effect the MSE performance unlike
the case for increasing K the MSE performance decreased for
all solution methods as shown in Fig. 3 (c).

We further illustrate the effects on MSE performance by
increasing the K and N values jointly in Figs. 4 and 5,
respectively. For each values of K and N , we plot 6 bar
values where the front and back three values are for a1, a2 and
a3 techniques evaluated at Eb/No = 1 dB and Eb/No = 5
dB, respectively. In all our simulation studies, we observe
that the proposed eigenvector-based scheme outperforms the
average sum-channel method, showing the effectiveness of
new optimization based approach. Note the effective channel
based and eigenvector-based methods have similar MSE per-
formance, as discussed in Section II-C. Furthermore, the MSE
performance gain of the proposed eigenvector-based scheme is
more evident for larger values of N and K, further confirming
the effectiveness of the proposed solution for the multimodal
sensing and dense networks. Our numerical results suggest
that having a larger diversity gain is of great benefit, since
it can provide a satisfactory MSE performance with reduced
computational complexity.

IV. COMPLEXITY OF SOLUTION METHODS

In this section, we will be focusing on the computation
complexity of construction of filter A∗. The computational
complexity of the average sum-channel based method, a1, is
O(K3), which involves the addition of K matrices having the
size of K ×K. The proposed eigenvector-based method, a2,
in addition to a1, involves eigenvector decomposition process
with the complexity of O(K3), hence overall complexity is
O(K3 + K3) = O(K3). On the other hand, the complexity
of effective channel based technique, a3, involves SVD for
each matrix Hk with the complexity of O(K3), K × K
matrix multiplication and K matrix addition that results in an
overall complexity of O((K3 +K3)K) = O(K4). Since our
matrices are diagonal in our formulations, it is straightforward
to show that the complexity of sum-channel based method,
a1, eigenvector-based method, a2, and effective channel based
technique, a3, are O(K2), O(K2), and O(K3), respectively,
as shown in Table I.

In contrast to the a3 approach, the a2 approach has lower
computation complexity although they both demonstrate sim-
ilar MSE performance.
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Fig. 3: NOMA with (a) N = 6 and K = 2, 5, 8, (b) N = 12 and K = 8, 20, 32, (c) K = 3 and N = 8, 20, 32
.
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V. CONCLUSION

In this paper, we developed a wideband non-orthogonal
multiple-access based computation over multi-access channel
(NOMA-CoMAC) framework. We formulated an optimization
problem analytically in terms of the mean squared error
(MSE), which is a prerequisite for the CoMAC, specifically
in multimodal sensor networks. We conceived an improved

TABLE I: Computational Complexity Comparison

Algorithms Complexity Main procedures

a1 O(K2) multiplication, addition
a2 O(K2) multiplication, addition
a3 O(K3) multiplication, addition

MSE minimization solution based on the eigenvector-based ap-
proach. We demonstrated that our proposed eigenvector-based
scheme achieves around 0.7 lower at Eb/No = 1 dB in terms
of MSE performance compared to average sum-channel based
method. Moreover, MSE performance gain of our proposed
solution increases for the larger values of K by benefiting from
the diversity gain. This, in return, suggests that our proposed
scheme is eminently suitable for multimodal sensor networks.
In our future research, we will conceive NOMA-CoMAC for
multimodal sensors for transmission over dispersive fading
channels as well as possibility of incorporating network coding
in the existing framework.
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