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Abstract—In this paper, we study American sign language
(ASL) hand gesture recognition using Doppler radar. A set
of ASL hand gesture motions are captured as micro-Doppler
signals using a microwave X-band Doppler radar transceiver. We
apply joint time-frequency analysis and observe the presence of
the micro-Doppler signatures in the spectrogram. The micro-
Doppler signatures of different hand gestures are analyzed
using Matlab. Each hand gesture is observed to contain unique
spectral characteristics. Based on unique spectral characteristics,
we investigate the classification of ASL essential short phrases
including emergency signals. For recognizing and characterizing
the presence of micro-Doppler signatures in spectrogram we
explore deep convolution neural network (DCNN) algorithm.
We show that the DCNN algorithm can classify different sign
language gestures based on the presence of micro-Doppler signa-
tures in the spectrogram with fairly high accuracy. Experimental
results reveal that utilizing 80% of data for training, and the
remaining 20% for validation purposes in DCNN algorithm a
validation accuracy of 87.5% is achieved. To further improve
the recognition system, we apply a very deep learning algorithm
VGG-16 using transfer learning, which improves the validation
accuracy to 95%.

Index Terms—Detection and classification, American sign lan-
guage (ASL) gesture recognition, Doppler radar, micro-Doppler
signatures, deep convolution neural network (DCNN), VGG-16
algorithm.

I. INTRODUCTION

Hand gesture recognition has many applications ranging
from medical, gaming, human machine interaction as well
as sign language interpretation [1]-[3]. The problem of hand
gesture recognition consists of identifying a given gesture
performed by hand movements. There are various ways that
can be used to perform hand gesture recognition ranging
from video or image processing to radar motion detection
and tracking [4]. A number of research works have studied
sign language hand gesture recognition using video or image
signal processing with the combination of machine learning.

In [5], radar is used to enable gesture recognition based on
the micro-Doppler signatures that are associated to different
movements. Five micro-Doppler based handcrafted features
are used for gesture recognition. A simple k-nearest neighbor
(ENN) classifier [6] is applied to evaluate the importance of
the five features. The overall classification accuracy of the
proposed framework was 84%.

In [7], a method is presented to classify four different kinds
of hand gestures that include snapping fingers, flipping fingers,
hand rotation and calling, using a radar micro-Doppler sensor.
Two different kinds of micro-Doppler features are extracted
from time-frequency spectrum and support vector machine
(SVM) [6] is applied to classify the four kinds of gestures.
Experimental results reveal the proposed method classification
accuracy was 88.6%.

In [8], deep neural network is applied for American sign
language (ASL) fingerspelling (posture) translation purposes.
The ‘Kaggle’ ASL letter database of hand gestures was used
to evaluate the framework. Performance validation provides
high accuracy posture translation.

In [9], a real-time ASL fingerspelling translator based on
convolutional neural network (CNN) is presented. A model is
developed for classification of letters from a—e correctly with
first-time users and another that classifies letters from a — k
correctly in the majority of cases.

In [10], hand gesture recognition using radar micro-Doppler
signature envelopes is presented. The kNN classifier and Man-
hattan distance (/1) [11] measure is used in their algorithm
for distinguishing the envelope values. The algorithm uses
an energy-based thresholding for separately extracting the
positive and negative frequency envelopes that are present in
spectrogram. The proposed method does not make use of a
deep learning algorithm.

In [12], a vision-based application is created that can
offer sign language translation. The proposed method extracts
temporal and spatial features from the video sequences. For
spatial feature recognition CNN is used and a recurrent neural
network (RNN) is applied to train on the temporal features.

In [13], a method is presented using deep convolution neural
network (DCNN) to classify images of the letters and digits
in ASL. The data set of 25 images from five different people
were collected using a camera. An accuracy of 82.5% is
achieved on the alphabet gestures, and 97% on digits.

Unlike the previous studies, which mainly focus on ASL
letter or digit recognition, in this paper, we investigate recog-
nition of ten essential hand gesture phrases including emer-
gency signals. In an emergency situation, a first responder
who may be unfamiliar with ASL can use the proposed



system to quickly recognize emergency ASL phrases. The
motion variations produced by hand gesture are captured by
a microwave X-band Doppler radar transceiver. The captured
signal is fed into a data acquisition device (DAQ) and using
National Instrument (NI) LabVIEW SignalExpress software,
the raw data is imported to a laptop for signal processing. We
apply joint time-frequency analysis and observe the presence
of micro-Doppler signatures in the spectrogram. From these
observations, we notice that hand gestures contain unique
micro-Doppler signatures. Based on unique micro-Doppler
signatures, we build an ASL classification scheme that clas-
sifies important short phrases including emergency signals
such as “Help me”, “Call 9117, “Danger”, “Don’t touch”,
“Do you need help?”, “Call an Ambulance”, “How are you?”,
“Nice to meet you”, “Yes” and “No”. To recognize the micro-
Doppler signatures, we explore a DCNN algorithm, which is
considered one of the most successful deep machine learning
algorithms for image recognition [14], [15]. Spectrogram can
be considered as an image in which case applying DCNN
can serve well for the feature recognition purposes. From the
captured data, we crop and collect the spectrograms of the dif-
ferent phrases. We then apply the DCNN algorithm on to the
captured raw micro-Doppler spectrograms. With a fairly high
accuracy DCNN algorithm classifies different ASL gestures
based on spectrograms. Experiments are conducted using a
total of 400 spectrogram images for 10 different gestures of
which 80% is used for training purposes, and the remaining
20% is used for validation purposes. The experimental results
reveal that the average validation accuracy is 87.5%. To further
improve the recognition system a very deep learning algorithm
VGG-16 [16] using transfer learning is explored, which raises
the validation accuracy to 95%.

The rest of the paper is organized as follows. In Section
II, we discuss micro-Doppler signatures generated by the
sign language gestures, followed by the sign language ges-
ture detection with Doppler radar in Section III. The deep
convolution neural network algorithm is presented in Section
IV. After illustrating experimental results in Section V, we
draw the main conclusions in Section VI.

II. MODELING MICRO-DOPPLER SIGNATURES FROM SIGN
LANGUAGE GESTURES

Sign language gestures are produced by the motion of the
speaker’s hands in a certain pattern. These motions can be
captured when illuminated by a radar signal. When a radar
device transmits a pure tone at carrier frequency f. onto
a person communicating using sign language, the reflected
signal contains micro-Doppler effects centered around the f.,
due to micro-motion variations of hands.

The received Doppler signal as a function of time is
modeled as [17]

S(t) — 1461'(2'rrfci&—i-,6’sin(271'fut))7 (1)
where A is the reflectivity of the vibrating point scatterer,

Bsin(2 f,t) is the time-varying phase change of the vibrating
scatterer in which f, is the frequency of vibrating scatterer

and 8 = 47D, /), D, is the amplitude of the vibration and
A is the wavelength of the transmitted signal.

Since (1) is a periodic function it can be expanded using
Fourier series as

s(t)=A Z Cnej27r(fc+nfu)t’ )

n=—oo

where ¢, is the Fourier series coefficient, which is expressed
as 1 7
Cp = —

= PNl g=in2nfitqr — 7.(8),  (3)

where J,, () is the nth-order Bessel function of the first kind.
Substituting (3) into (2) yields

s(t) =AY Ju(B)el? At 4)
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Equation (4) represents a micro-Doppler frequency spec-
trum consisting of pairs of harmonic spectral components
centered around the carrier frequency f.. The spacing between
the adjacent spectral lines is governed by f,. Since the
phase of the reflected wave expressed in (1) is time-varying,
the instantaneous frequency fp, which represents the micro-
Doppler frequency induced by the vibrations of the scatterer,
can be expressed as

_ L)
fop= o dt /5’f,,c05(27rf,,t) (5)
= 4TﬁD,,f,,cos(27rf,,t). (6)

The maximum micro-Doppler frequency change is 47”Dl, fus
which can be used to estimate the maximum displacement of a
vibrating scatterer. The micro-Doppler caused by vibration is a
sinusoidal function of time at the vibrating frequency f,. The
hand gesture vibrations produce micro-Doppler perturbations
centered around the carrier frequency f. can be used for sign
language gesture detection and classification.

III. SIGN LANGUAGE GESTURE DETECTION WITH
DOPPLER RADAR

In this section, we analyze the possibility of detecting
sign language gestures using Doppler radar. The hand gesture
motion variations are captured as micro-Doppler signal using
a microwave X-band Doppler radar HB100 transceiver, shown
in Fig. 1. The captured signal is fed into the DAQ device with
a sample rate of 1 ksps and the raw data is imported to a laptop
for signal processing using NI LabVIEW SignalExpress soft-
ware. The hand gesture extraction process flowchart is shown
in Fig. 2.

Computer

Fig. 1: Interfacing radar sensor with DAQ system.
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Fig. 2: Hand gesture micro-Doppler extraction process.

After removing the carrier frequency, we plot in Fig. 3 four
different samples of ASL hand gesture spectrogram snapshots
for a) “Help me”, b) “Call 9117, c¢) “Danger” and d) “Don’t
touch”. As we can see from Fig. 3, each gesture has a unique
spectrogram image characteristics and could be differentiated
from each other even with a naked eye. The spectrogram, as
an example, shown in Fig. 3a contains 13 samples of “Help
me” ASL patters. The micro-Doppler variations are observed
to be in the range from 0 — 50 Hz. Each of these gestures in
the spectrogram plot are cropped into images of size 100 x 100
pixels for signal processing in the DCNN algorithm.
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Fig. 3: Hand gesture spectrogram snapshots:

IV. RADAR MICRO-DOPPLER CLASSIFICATION WITH
DEEP CONVOLUTION NEURAL NETWORK

A number of advanced CNNs algorithms have been devel-
oped for image classification [2], [3], [5], [7]-[9], [18], [19].

Figure 4 depicts a generalized network of CNN. The CNN
algorithm extracts features from the training images and
generates classifiers. The classifier weights are determined
through the training process. The produced output y, shown
in Fig. 4, is compared with the input data d and the error
information e is fed back to the algorithm to improve the
classification process. In general, 80% of data is used for
training purposes, and the remaining 20% for validating the
CNN algorithm [21].

CNN (Feature
Extractor + Classifier)

\ ST
Voswa

Training Data
{Input, Correct
Output}

Fig. 4: Generalized network of CNN.

To classify the different swimming styles, we implement a
DCNN algorithm in Matlab as follows. The captured spectro-
gram images are first manually cropped to 100 x 100 pixel
RGB images with ten classes, 1 — 10. The input images
undergo feature extraction network by first being processed
by the convolution layer consisting of 8 convolution filters
of size 20 x 20. The output from the convolution layer goes
through the rectified linear unit (ReLU) function followed by
the pooling layer, which employs max pooling process of 2 x 2
matrices. This process is repeated several times to create the
output and train the machine with inherent features of the
image. The output of the pooling layer is fed into a second
convolution layer consisting of 16 convolution filters of size
10 x 10. Similarly, after passing the output through the ReLU
function it undergoes the pooling layer with max pooling size
of 2 x 2 matrices. Finally, it is passed through a third round of
convolution layer consisting of 32 convolution filters of size
5 x b after which it is processed by the ReLU function and
the pooling layer with max pooling size of 2 X 2 matrices.

The max pooling concept is demonstrated in Fig. 6. The
stride is the sliding window operation, which is used in the
convolution layer and in the max pooling operation in which
case the stride is 2. Suppose n X n convolution is performed,
the stride represents the movement by S elements with every
step. If the stride is defined as 1 that means the convolution
layer will move with sliding window of 1 pixel and move
every third pixel by skipping the second pixel. Max pooling is
a downsampling process where it selects the maximum value
from each view. Since the spectrogram images contain sharp
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Fig. 5: Architecture of the DCNN algorithm implemented in Matlab.

edges max pooling instead of average pooling is used to ex-
tracts the most important features such as edges. The classifier
network consists of a fully connected layer comprised of 100
hidden nodes, which produce a Softmax output that in turn
is used for classifying the ten different ASL gestures. The
architecture of the DCNN algorithm implemented in Matlab
is shown in Fig. 5.
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Fig. 6: Max pooling principle.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
ASL classification scheme. The experimental setup of the
testbed is shown in Fig. 7. Ten different types of ASL
gestures are performed 40 times each and are captured by
the microwave X-band HB100 radar transceiver. A total of
400 ASL gestures are gathered. Hand gestures are performed
by an individual at a distance of approximately 80 cm from
the radar sensor. The HB100 microwave sensor transmits pure
tone at carrier frequency of 10.52 GHz. The reflected received
sinusoidal signal is fed to the NI DAQ 6009 device that
converts the analog signal to digital and feeds it to the NI
LabVIEW SignalExpress software. The captured raw data is
imported to Matlab to plot the spectrograms of the different
ASL gestures. The 10 different gesture spectrograms are
cropped and collected in a folder for classification purposes.

The proposed DCNN algorithm discussed in Section IV
is implemented in Matlab to classify the ten ASL hand
gestures. We used Dell Latitude E547 laptop with an 8th
Generation Intel Core i7 processor for running the deep
learning algorithm. Stochastic gradient descent (SGD) algo-
rithm with momentum is applied to accelerate the learning

NI SignalExpress
software

Microwave X-band
Micro-Doppler
/ sensor HB1oo

Fig. 7: Experiment setup.

rate. In the DCNN algorithm, the convolutions layers are
defined with the batch normalization layers and the ReLU
layers. The batch normalization layer helps to normalize the
input layer by adjusting and scaling the activations, which
can speed up the learning process. The ReLU layer captures
interactions and non-linearities and can greatly accelerate the
convergence of the SGD algorithm. The convolution layers of
the DCNN algorithm can be changed according to the needs
of experimentation.

The proposed DCNN algorithm is used to train those ASL
gestures depicted by the spectrograms. A data set of 400
spectrogram images are used for the 10 different ASL gesture
classification includes; “Help me”, “Call 9117, “Danger”,
“Don’t touch”, “Call an Ambulance”,“How are you?”, “Nice
to meet you”, “Yes” and ‘“No”. Out of these 400 images
320 are used for training and the remaining 80 for validation
purposes.

In Fig. 8, we plot the validation accuracy of the DCNN
algorithm. The training accuracy graph is plotted in blue solid
line and validation graph is plotted in black dotted line. The
batch size used for the training purposes is selected to be
10, which is the number of iterations used for each epoch. A
total of 30 epochs are used for data training, which resulted in
300 iterations. The experimental results reveal that the average
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Fig. 8: Validation accuracy and packet loss graph of DCNN
algorithm.

validation accuracy is 87.5%. The graph of the validation
accuracy and training accuracy should be close to each other
to overcome the overfitting problem. As we can see in Fig. 8,
the validation loss decreases gradually with each iteration and
the validation accuracy improves. However, it is important to
note that since moderate sample data images were gathered
in the experiment there is a gap about 12.5% between the
training and validation accuracy.

To further improve the classification accuracy, we explore
transfer learning. We apply VGG-16 algorithm, which is one
of the well known trained DCNN algorithms. VGG-16 is
developed by Karen Simonyan and Andrew Zisserman at the
Visual Geometry Group (VGG) [23] and it is a very deep
convolution network used for large-scale visual recognition.
It is a pre-trained neural network, which has capability to
train more than a million of images in 1000 categories. The
VGG-16 algorithm consists of a total of 41 layers in which 16
are the convolution layers [16]. The architecture of VGG-16 is
shown in Fig. 9. A preprocessing layer is included that takes
the RGB image with pixels values in the range of 0 — 255
and subtracts the mean image values.

224 x224x3 224 x224x64

112x 112 x 128

56|x 56 x 256
28 x 28 x 512

7x7x512

14x14 x 512 1x1x4096 1x1x1000

(=) convolution+ReLU
max pooling
fully nected+ReLU
softmax

Fig. 9: VGG-16 architecture [22].

In Fig. 10, we show the fully connected 16 convolution
layers that are used for training the data in the VGG-16
algorithm. The sizes of the convolution layers and max
pooling layers used in the VGG-16 algorithm are 3 x 3 and
2 x 2, respectively. The stride used in the convolution layer is
1 and padding size is also 1. The stride size of max pooling

layer is 2 and it does not use any padding. Padding is used
by adding an extra bit that contains important information
to protect the image from distortion. Since the image size is
reduced in the pooling process it results in image distortion.
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Fig. 10: Convolution layers of VGG-16 [23].

In Fig. 11, using the same experimental data, we train the
VGG-16 algorithm using 30 epochs, 5 iteration per epoch,
with a total of 150 iterations. The validation accuracy using
the VGG-16 algorithm, as we can see in Fig. 11, raises
to 95%. Comparisons of both results, DCNN and VGG-16
depicted in Figs. 8 and 11, respectively, VGG-16 provides
higher validation accuracy and thus, it has better prediction
capability than the DCNN algorithm. VGG-16 algorithm can
take into account the small pattern variations and thus provides
more accurate classification of the different ASL gestures
experimented in this study.
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Fig. 11: Validation accuracy and loss graph of VGG-16.

VI. CONCLUSION

In this paper, we investigated detection and classification
of ten different American sign language (ASL) essential short
phrase gestures including; “Help me”, “Call 9117, “Danger”,
“Don’t touch”, “Do you need help?”’, “Call an Ambulance”,
“How are you?”, “Nice to meet you”, “Yes” and “No”. The
gestures were captured by a X-band Doppler radar transceiver
and extracted using National Instruments (NI) data acquisition
(DAQ) device and LabVIEW SignalExpress software. The
spectrogram images of hand gestures movements were trained
and classified using deep convolution neural network (DCNN)
algorithm and a very deep learning VGG-16 algorithm both of
which were implemented in Matlab. We demonstrated that the
DCNN algorithm can classify different ASL gestures based
on spectrogram with a fairly high accuracy. The experimental
results reveal that the average validation accuracy of DCNN
and VGG-16 algorithms were 87.5% and 95%, respectively.
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