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Abstract—It was shown by Guruswami and Rudra that Reed-
Solomon codes can be list decoded to recover from phased burst
errors (i.e. errors occurring within fixed regular intervals) up
to the information-theoretic limit and, in particular, beyond the
Guruswami-Sudan bound. In this paper, we present evidence that
the algorithm developed by Guruswami and Rudra can also give
improvement for more “irregular” burst errors. We develop a
low-complexity multiplicity assignment scheme for soft decoding
of Reed-Solomon (RS) codes. Specifically, we present simulation
results where such soft decoding of RS codes outperforms the
existing soft decision decoding algorithms of Koetter and Vardy
as well as the algorithm of Das and Vardy on Gilbert-Elliott
channels (under QAM and BPSK modulations) for channels that
are more bursty. We also present a theoretical result that shows
that for certain Gilbert-Elliott channels, with high probability of
errors, the output list size for list decoding RS codes is one.

I. INTRODUCTION

Reed-Solomon (RS) codes are perhaps the most studied
codes with a wide range of applications in digital communica-
tions and storage. In his ground-breaking work, Sudan showed
that Reed-Solomon codes can be decoded from worst-case
errors beyond the half-the-distance bound under list decoding,
wherein the decoder is allowed to output a list of candidate
codewords with the guarantee that it contains the transmitted
codeword [1], [2]. This result was improved by Guruswami
and Sudan who showed that Reed-Solomon codes of rates
R can be efficiently list decoded from 1 −

√
R fraction of

errors [3]. For RS codes, this is to date the best known
result for worst-case errors. The influential work of Koetter
and Vardy [4] gave an algorithm to appropriately define the
“multiplicities” for the Guruswami-Sudan algorithm, which
led to a soft decision decoding algorithm for RS codes that
outperformed existing RS decoding algorithms on certain
stochastic channels.

Building on the results of Parvaresh and Vardy [5], Gu-
ruswami and Rudra [6] showed that the closely related Folded
Reed-Solomon (FRS) codes of rate R can be list decoded
up to the information-theoretic optimal 1 − R fraction of
worst-case errors. In particular, the FRS codes with folding
parameter m, which are obtained by grouping together m con-
secutive symbols from RS codewords, can be list decoded from
1− s+1

√
(mR/(m− s+ 1))s fraction of errors, where s ≤ m

is a free parameter. Choosing m and s appropriately one can

approach arbitrarily close to the bound of 1−R. Note that the
result of Guruswami and Rudra implies the following result for
RS codes. If the errors occur in phased bursts of size m, then
the algorithm in [6] can correct 1− s+1

√
(mR/(m− s+ 1))s

fraction of worst-case of such bursts.
Burst errors do occur in many information transmission

and storage systems [7]. However, the extra restriction of
phased burst errors in the result mentioned above is not always
realistic. A natural question, which motivated our work, is
whether the techniques from [6] can be used to (list) decode
RS codes to recover from more general burst errors.

In this work, we consider perhaps the most natural channel
to investigate the question above: the Gilbert-Elliott (GE)
channel [8], [9]. In this model, the channel is described by
a two-state Markov chain, where in the “good” state the
channel introduces no (or very little) error while in the “bad”
state the channel introduces (more) error. If the transition
probabilities are small, then this models burst errors. Given
the ubiquity of RS codes, in this work we exclusively focus
on the performance of RS codes over the GE channel.

To the best of our knowledge, there is no prior work on
performance of list decoders for RS codes on the GE channel.
Performance analysis of non-interleaved Reed-Solomon codes
over the finite-state channels (and in particular the GE channel)
was presented in [10]. The analysis is combinatorial and
it does not specifically analyze the algorithm performance.
There have been other works on the GE channel, e.g., the
development of a trellis structure based decoding algorithm
that is based on a posteriori probability (APP) for linear block
codes over a GE channel [11]. There is also a fair amount of
literature on decoding RS codes from burst errors, though a
lot of them deal with phased burst errors [12]–[15].

In this paper, we adapt the soft decoding algorithm for FRS
codes from [6] to decode RS codes. Indeed, any decoding
algorithm for FRS codes can be naturally adapted to decode
RS codes: given a received word, one can bundle up m
consecutive symbols to define an intermediate received word
that can then be fed into the FRS decoder. Since there is a
natural bijection between an RS code and the corresponding
FRS code, the output of the FRS decoder can be interpreted
as RS codewords. Note that in the translation above, we can
choose the parameters m and s. Potentially, one can pick these
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parameters based on the channel parameters.
The bulk of our results in this article are obtained through

simulations for moderate and high rate RS codes of block
length 255 (over GF (256)). We consider the GE channel
under both 256-QAM (quadrature amplitude modulation) (in
which case an independent errors caused by additive white
Gaussian noise (AWGN) in both the inphase and quadrature
components of each modulated QAM symbol) and binary
phase-shift keying (BPSK) modulation (in which case the
AWGN noise acts on each bit). Our results indicate that
the soft decoding algorithm in [6] has a lot of potential for
correcting general stochastic burst errors. We would like to
stress that in our simulations, we did not implement the entire
soft decoding algorithm from [6], as the current implemen-
tations are not that efficient in practice with decoding com-
plexity (Nm)O(s). In particular, we developed low-complexity
multiplicity assignment scheme and in our simulations we
determined whether a decoding error occurred or not by
verifying if the transmitted codeword satisfied the successful
decoding constraint1. We believe our results provide more
motivation to design practical implementations of algorithms
in [6].

An important matter that we have not discussed so far is
the number of codewords that are output by the list decoding
algorithm. The theoretical bounds in [6] are polynomially
small, though they are still quite large for practical systems.
However, the bounds in [6] are for worst-case errors. As a new
theoretical contribution of this article, we observe that a recent
result on list sizes for random errors [16] and (well-known)
results on the mixing time on Markov chains imply that for
certain GE channels, with high probability over the random
errors, any list decoding algorithm for RS codes (with not too
large dimension) needs only to output one codeword.

The rest of the paper is organized as follows. In Section
II, we discuss the preliminaries. In Section III, we present
a theorem regarding the average list size for RS codes. In
Section IV, we describe our soft decoding algorithm for RS
codes on GEQAM. In Section V, we present our simulation
methodology and results before presenting our conclusions in
Section VI.

II. PRELIMINARIES

A. Reed-Solomon and Related Codes

Reed-Solomon codes over Fq of dimension k and block
length n ≤ q, are defined as follows (for some S ⊆ Fq
with |S| = n). We map a message in Fkq to a degree
k − 1 polynomial f and the corresponding codeword is
the vector (f(α))α∈S . A common instantiation is S =
{1, γ, γ2, . . . , γn−1}, where γ is the generator of the multi-
plicative subgroup of Fq . We will denote this code by RS[k, n].
The m folded version of RS[k, n], which we will denote by
FRS[k, n,m], is a code of block length N ′ = n/m over Fmq ,
where n is divisible by m. The jth symbol for 0 ≤ j < n/m

1Due to this assumption, we determine the decoding error probability in
our results rather than the codeword error probability as the latter is generally
used when the transmitted codeword is decoded uniquely.

consists of the m-tuple (f(γjm), f(γjm+1), ..., f(γjm+m−1))
where as before f is the degree k−1 polynomial representing
the message. The list decoding algorithm for FRS[k, n,m]
proceeds by reducing the task to list decoding a related
code PV[k, n,m, s] for some parameter s ≤ m, which is
a special instantiation of the codes considered by Parvaresh
and Vardy [5] and it is defined as follows. For each symbol
from Fmq in any codeword in FRS[k, n,m] replace it by
(m−s+1) symbols from Fsq by “sliding” a window of length
s over the Fmq symbol. Note that the code has a block length
N = (m−s+1)N ′ = (m−s+1)n/m. We will crucially use
the following result concerning soft decoding these codes.

Theorem 1 ( [6], [5]): Let 1 ≤ s ≤ m be integers and
let n be an integer that is divisible by m. Given non-negative
integer weights {wi,α} for every 1 ≤ i ≤ N and α ∈ Fsq , there
exists a list decoding algorithm that outputs all the codewords
(c1, . . . , cN ) ∈ PV[k, n,m, s] that satisfy

N∑
i=1

wi,ci >
s+1
√
(k − 1)sW, (1)

where W = (s+ 1)!

N∑
i=1

∑
β∈Fs

q

(
wi,β + s

s+ 1

)
. (2)

The algorithm runs in polynomial time in qs and W . �
B. Gilbert-Elliott Channel

We will model burst noise in this paper via the Gilbert-
Elliott (GE) noise model. In this model, there are two states: G
(“good” state) and B (“bad” state). From state G, the channel
can transition into state B with probability b and vice-versa
with probability g. With probability 1 − b (1 − g resp.), the
channel remains in state G (B resp.). This is a simple two state
Markov chain with the following steady state probabilities

πG =
g

g + b
and πB =

b

g + b
.

Note that the closer the quantity 1 − g − b (which in the
literature it is referred as the “burst factor” or “channel
memory”) is to 1, the more “bursty” the channel is. It is easy to
check that the channel transition matrix has second eigenvalue
equal to 1− g − b, which along with the Chernoff bound for
Markov chains from [17], implies the following result.

Lemma 1 ([17]): Let g, b, ε > 0 be real numbers such that
g + b+ ε ≤ 1. Let n be a large enough integer and let Bn be
the number of “bad” states encountered in a random walk on
the GE Markov chain with g and b as transition probabilities.
Then,

Pr

[∣∣∣∣Bn − bn

g + b

∣∣∣∣ > εn

]
≤ 2e−(g+b)ε

2n. �

To complete the description of the GE channel, we need
to specify how noise acts in the “good” and “bad” states. We
will consider three variations: (i) In the first version, which
we refer to as GErand, there is no noise in the “good” state,
while in the “bad” state, the symbol from Fq is transformed
into one of the other q−1 possibilities with equal probability.
(ii) In the second version, which we refer to as GEQAM, in
the “good” state the channel adds AWGN with power spectral

1073



density NG

2 . In the “bad” state, the channel adds AWGN with
power spectral density NB

2 , where NB > NG. We stress that in
this model, the noise always acts at the level of symbols from
Fq . (iii) In the third version, which we refer to as GEBPSK is
applicable when q is a power of 2, the channel is identical to
GEQAM except in this case the noise acts at the bit level.

In this paper, for GEQAM we will be working with F256-
QAM modulation and for GEBPSK we will be working with
F256 BPSK modulation.

III. AVERAGE LIST SIZE FOR RS CODES ON GErand

We present the following theorem regarding the average list
size for RS codes on the GErand channel of Section II-B:

Theorem 2: Let g, b, ε, R > 0 be real numbers such that
g+b+ε ≤ 1 and b/(b+g)+ε ≤ 1−R−ε. Then, the following
results holds for RS codes with rate R and large enough block
length n. With all but an exponentially small probability, for
the GErand channel with transition probabilities g and b, the
transmitted codeword is the only codeword within relative
Hamming distance b/(g + b)− ε from the received word. �

From Lemma 1, with all but an exponentially small prob-
ability, the fraction of symbols that fall in the “bad” state is
given by b

g+b − ε ≤ ρ ≤ b
g+b + ε. Then using a recent result

by Rudra and Uurtamo [16] we prove the theorem.
In other words, for instantiations of the GErand, where

there are ρ ≤ δ − ε fraction of “bad” states (the locations
of the “bad” states can be adversarial), for any code (over
large enough alphabet) with relative distance δ, with all but an
exponentially small probability, only the transmitted codeword
is within a relative Hamming distance ρ from the received
word. Theorem 2 now follows from the fact that for RS codes
of rate R, δ ≥ 1−R (and that the result from [16] holds for
RS codes with large enough block lengths).

IV. THE SOFT DECODING ALGORITHM FOR RS CODES

In this section, we describe our soft decoding algorithm for
RS codes on GEQAM. In what follows, A and r are two integer
parameters. We assume that q-QAM modulation is given by
the function φ : Fq → R2. Thus, the received word is a vector
y = (y1, . . . , yn) ∈ (R2)n.

The main idea in the algorithm is to convert the de-
coding process for RS[k, n] into one for the corresponding
PV[k, n,m, s] code. In particular, the received word y is con-
verted into the corresponding received word y′ ∈

(
(R2)s

)N
where N = (m−s+1)n/m (i.e., divide y into blocks of size
m and then run a “sliding” window of size s over each block
over (R2)m). Then, y′ is demodulated to obtain weights for
every possible symbol in Fsq for every position. These weights
are then fed into the algorithm in Theorem 1.

The demodulation is implemented in the following manner.
In the first step, for every position 1 ≤ i ≤ n, we compute the
Euclidean distance from the received symbol yi to φ(β) for
every β ∈ Fq . Let di ∈ Rr denote the vector of the r smallest
of such distances2. Then, for each position 1 ≤ j ≤ N for

2To simplify the presentation, we will not explicitly keep track of these r
values in Fq , though in our simulations we do.

y′, we compute the r smallest Euclidean distances (over R2s)
between yj and φ(α) for α ∈ Fsq , where φ((α1, . . . , αs)) =
(φ(α1), . . . , φ(αs)) ∈ (R2)s. Let the vector of such distances
be denoted by d′j for every 1 ≤ j ≤ N (note that d′j can be
computed from di, where i = `+(j−1) mod (m−s+1)+

m
⌊

j−1
m−s+1

⌋
for 1 ≤ ` ≤ s).

For every 1 ≤ j ≤ N and α ∈ Fsq such that the
distance between yj and φ(α) is not among the smallest r
values, assign wj,α = 0. Next, we specify how the remaining
weights are chosen. For every 1 ≤ j ≤ N , define djmin to
be the smallest component in the vector d′j and let uj =

d′j−(d
j
min, . . . , d

j
min). From uj , we define a probability vector

pj that represents the probability distribution whose support is
over α ∈ Fsq that have an entry in uj and the probability value
assigned is proportional to exp(−uj(α)). Finally, we compute
wj,α (for α that appears in uj) as

⌊
A·pj(α)
pmin

⌋
, where pmin is

the smallest component value over all pj (1 ≤ j ≤ N ).
Our soft decoding algorithm for GEBPSK is similar to the

one for GEQAM above. In BPSK modulation, {0, 1} will be
mapped to {−a, a} for some parameter a > 0.

Let the BPSK modulation be given by the function h :
Fq → {−a, a}log2(q), for some parameter a > 0. Note that the
received word will be a vector y = (y1, . . . , yn) ∈ (Rlog2(q))n.
As with our algorithm for GEQAM, for every position 1 ≤ i ≤
n, we compute di ∈ Rr to be the vector of the r smallest such
Euclidean distances between yi and h(β) for β ∈ Fq and then
follow exactly the same procedure as for q-QAM to obtain the
weights for the soft decoding algorithm in Theorem 1.

V. SIMULATION RESULTS
A. Setup

We ran simulations on RS[k, 255] for k ∈ {145, 191} over
F256. We compared the performance of our soft decoding
algorithm with RS (hard) list decoding and the soft decoding
algorithm of Koetter and Vardy (KV)3. The KV soft decoding
algorithm, we recall, involves a parameter that controls the
number of iterations. We optimized this parameter empirically
to give the best performance possible for the KV algorithm.
We also simulated the performance of the soft decoding algo-
rithm by Das and Vardy (DV) [18]. However, the performance
of the DV soft decoder was inferior4 to that of the KV decoder
on GEQAM and GEBPSK. We picked 1000 random messages
from the RS code and ran the simulation for multiple random
noise samples keeping track of decoding failures to compute
the decoding error probability.

B. Choosing the parameters

In our simulations, r = 4 and A = 104 performed best
and we present the results for those choices, for GEQAM and
GEBPSK, in which we fixed the SNR of the “bad” state to be
5dB and −5dB, respectively.

3Specifically, we computed pj for 1 ≤ j ≤ n as before but with s = m =
1. Then, the KV algorithm was used to compute the weights.

4This was true even with the different demodulation used in [18], which
was personally communicated to us by Das.
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Fig. 1: Choosing s and m for GEQAM simulation for k = 145,
g/b = 15, 28dB SNR in “good” state; for k = 191, g/b = 30,
30dB SNR in “good” state.

Intuitively, since the burst errors in the GE channel are not
phased, it would make sense to pick large m – in particular
m = 255, which seems like a reasonable choice. Furthermore,
the proof of Theorem 1 crucially uses the fact that consecutive
regions of uncorrupted symbols give rise to a lot of “sliding
windows” of size s that are uncorrupted. A larger value of s
tends to give better bounds. However, larger s works only if
the non-error locations mostly occur in consecutive windows
of size (much) larger than s. Again, on the GE channel
(especially, for larger values of b) this would be unlikely.
Thus, s = 2 or 3 seems to be a reasonable choice. We picked
s = 3 and m = 255 in our simulations based on preliminary
experiments as illustrated in Fig. 1 for GEQAM. For GEBPSK,
s = 2 and m = 255 or s = 3 and m = 255 are good choices
- the plots are omitted due to lack of space.

C. Simulation Results for GEQAM

In our simulation results, our suggested FRS soft decoding
algorithm outperforms both the KV and DV soft decoding
procedures as well as RS hard list decoding.

Fig. 2 plots the decoding error probability of the four algo-
rithms versus the SNR in the “good” state for RS[145, 255].
At error rate of 10−3, we have a gain of about 2dB over the
KV soft decoding algorithm, while only our suggested soft
decoding algorithm obtains a decoding error probability lower
than 10−4 (at 32dB SNR or higher in the “good” state).

Fig. 3 plots the decoding error probability of the four
algorithms versus µ , 1− g− b. Again, the superiority of the
suggested soft decoding algorithm is apparent. At µ ≈ 0.9 our
decoding error rate is about 7 times lower than other decoding
algorithms.

The performance of the algorithms for RS[191, 255] is very
similar to RS[145, 255] - the plots are omitted due to lack of
space.
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Fig. 2: RS[145, 255] on GEQAM with g = 0.15 and g/b = 15.
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Fig. 3: RS[145, 255] on GEQAM with g/b = 15 and 28dB
SNR in “good” state.

D. Simulation Results for GEBPSK

In our simulation studies for GEBPSK, the results are not
uniformly good for our soft decoding algorithm. The suggested
FRS soft decoding algorithm outperforms the KV algorithm
and RS hard list decoding (as well as the DV algorithm) for
certain ranges of parameters only, in particular for smaller
values of g and b that describe “bursty” channels (and for
k = 191 with larger value of a). This result is also somewhat
intuitive as under GEBPSK the noise acts on bits and for larger
values of b the probability of a symbol in F256 being in error
increases. (Note that this is less likely in GEQAM, where the
noise acts on symbols in F256.)

Fig. 4 plots the decoding error probability of the four algo-
rithms versus the SNR in the “good” state for RS[145, 255].
After 4dB SNR in the “good” state, our algorithm outperforms
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Fig. 4: RS[145, 255] on GEBPSK with g = 0.02, g/b = 12
and a = 1.

Fig. 5: RS[145, 255] on GEBPSK with g/b = 6, 14dB SNR
in “good” state and a = 1.

the other three algorithms.
In Fig. 5, we plot the decoding error probability of the

four algorithms versus µ. For µ above 0.95, which is of
primary interest as they closely model burst errors, the pro-
posed algorithm performs superior compared to the other
three algorithms. For smaller µ values, the KV soft decoding
algorithm performs the best.

The performance of the algorithms for RS[191, 255] is very
similar to RS[145, 255] - the plots are omitted due to lack of
space.

VI. CONCLUSION

In this paper, we extended the Reed-Solomon codes list
decoding algorithm developed by Guruswami and Rudra
originally for phased burst errors to more “irregular” burst

errors. Particularly, we develop a low-complexity multiplicity
assignment scheme for soft decoding of Reed-Solomon (RS)
codes and in our simulation results outperforms the existing
soft decision decoding algorithms of Koetter and Vardy as
well as Das and Vardy on Gilbert-Elliott (GE) more bursty
channels. We also presented a theoretical result in which we
showed that for certain GE channels, with high probability of
errors, the output list size for list decoding RS codes is one.
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