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Abstract—In this work, we develop a theoretical framework
for reliable digital recording system identification from digital
audio files alone, for forensic purposes. A digital recording system
consists of a microphone and a digital sound processing card.
We view the cascade as a system of unknown impulse response.
We expect the same manufacturer and model microphone-sound
card combinations to have very similar/near identical impulse
responses, bar any unique manufacturing defect. Input voice (or
other) signals are modeled as non-stationary processes. The tech-
nical problem under consideration becomes blind deconvolution
with non-stationary inputs, as it manifests itself in the specific
application of digital audio recording equipment classification.
We propose a conditionally maximum-likelihood (CML) algo-
rithm to estimate underlying systems impulse response together
with a novel nearest neighborhood algorithm for recording
system identification. Experimental results demonstrate over
99.2% accuracy in identification of the recording devices.

Index Terms—Audio fingerprinting, blind deconvolution, sys-
tem identification.

I. INTRODUCTION

Digital recording system identification allows us to distin-

guish between different recording systems regardless of the

audio format. Each manufacturer or brand of the recording

system has unique characteristics in the audio recordings they

produce. Recording system identification technology is able to

extract recording system characteristics (e.g., impulse response

of a recording system) and make comparisons. If similar,

they belong to one type of recording system, otherwise they

belong to different recording systems. The technology should

be robust even if the audio signal has undergone a certain

degree of modification. Such modifications may include, as an

example, linear disruption such as level changes or bandwidth

limitation encountered in the case of radio broadcasting. Other

modifications include non-linear disturbances, for example,
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encoding as MP3 format, or recording with a distorted/high

noise recording system. Many of these techniques have ap-

plications in criminology and forensics, where determining

whether a certain recording is from an original device and thus

determining its validity. Moreover, this aspect can be used to

distinguish between the normal and live versions of an audio

recording, which can improve monitoring of illegal copying

of original music for piracy issues. Although there have been

significant advances in image forensics, audio forensics is

still in its infancy. Over the past several years, recording

device identification has gained more attention. For example,

Kotropoulos and Samaras [1] studied mobile phone identi-

fication from recorded speech signals alone, based on Mel

frequency cepstral coefficients (MFCCs), which are extracted

from the recorded audio to train a Gaussian Mixture Model

(GMM) with diagonal covariance matrices. Garcia-Romero

and Espy-Wilson [2] have studied on automatic identification

of acquisition devices from speech recordings alone, by using

a support vector machine (SVM) classifier to perform closed-

set identification experiments in which they focused on two

classes of acquisition devices. Panagakis and Kotropoulos [3]

studied acquisition device identification using random spectral

features (RSFs) and the labeled spectral features (LSFs), which

are extracted by applying unsupervised and supervised feature

selection to the mean spectrogram of each speech signal.

Kraetzer, et al., [4] proposed to identify four microphones in

which short-term features and MFCCs are combined together

to form the feature vectors, then Naive Bayes classifiers are

applied to classify these four microphones. Other results that

are based on MFCCs were reported by Hanilçi, et al., [5], Zou,

et al., [6], Qin et al., [7] and Qi, et al., [8], where latter uses

noise as the intrinsic fingerprint traces of an audio recording

device.

Unlike the present methods used in literature, we propose

a blind system identification technique without any prior978-1-5386-8380-4/19//$31.00 c© 2019 IEEE
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Fig. 1: Digital audio recording system model.

information. Due to memory and low complexity constrictions,

we consider blind deconvolution, which does not use any

reference signal. Identifying a sound recording system can be

very challenging, as we are considering a digitally compressed

recorded file (e.g., MP3) without any information of the source

or any reference audio signals. The basic mechanism of audio

recording can be simply explained as follows: sound source

goes through an impulse response of a system, specifically,

in our system the impulse response includes a microphone

and a sound processing card. However, the profile of a system

imposed on the sound source during recording process is quite

impossible to be identified by means of human ears when it

is played back. Since, the sound heard by a person is not

simply the original sound, but instead it is processed through

a recording system.

A considerable number of linear signal processing prob-

lems reduce to the fundamental task of deconvolution. Those

problems are blind, in the sense that neither the source

signals nor the impulse response of the system are known,

which substantially increases the difficulty of the problem.

Conventional techniques of blind deconvolution cannot be

applied on this system, since the human voice is a non-

stationary process. In our solution, we search for the reliable

estimates of the system profile by identifying the location of

the poles. Given those poles we develop a near neighbouring

algorithm that can classify recorded audio files according

to their impulse response of microphone/recording system.

Experiments are conducted to evaluate the performance of the

proposed classifier, which demonstrate over 99.2% accuracy

in identifying the recording devices.

The rest of the paper is organized as follows. In Section

II, we present the system and signal model of digital record-

ing system and formulate the recording system identification

problem. In Section III, we propose a blind deconvolution

solution and the recording system identification performances

is presented in Section IV, followed by a few concluding

remarks, which are drawn in Section V.

The following notations are used in this paper. All boldface

lower case letters indicate column vectors and upper case

letters indicate matrices, ()T denotes transpose operation, |.|
denotes cardinality of the set, ∗ is the convolution operator,

‖ ·‖2F is the Frobenius norm 2 and ⌊.⌋ is the flooring function.

II. DIGITAL RECORDING SYSTEM AND PROBLEM

FORMULATION

In this section, we first present a digital recording system

model with block diagrams. Then we formulate a mathematical

model for the underlying problem.

A. Signal Model and Notation

A simple single channel digital audio recording system

consists of a microphone and a digital sound processing card,

as shown in Fig. 1. The audio signal s(t) ∈ R, t ∈ T ,

T = {1, ..., T} ⊂ Z, is picked up by a microphone, which

acts as a transducer converting the air pressure caused by the

audio source to an electrical continuous time signal m(t). It

is reasonable to assume that the channel between the audio

signal s(t) and the microphone is distortionless. Therefore,

within the short time frame T , the channel from audio signal

s(t) to the output of microphone can be considered as a linear

time-invariant (LTI) system and is represented by continuous-

time impulse response h(t). The output of microphone signal

m(t) can thus be formulated as

m(t) = h(t) ∗ s(t). (1)

The continuous waveform, m(t) is processed by a digital

sound card. Most of the sound cards perform pulse code

modulation (PCM) on continuous audio waveforms, which

involves sampling, quantizing and digitizing by analog-to-

digital converter (ADC). The audio signal first passes through

a sampler that samples the source m(t) at the sampling

rate fs, as follows m[n] = m(nτs) ∈ R with n ∈ N ,

N = {1, ..., N} ⊂ Z, where N = ⌊T/τs⌋ and τs = 1/fs
is the sampling interval. Then the continuous value sampled



audio m[n] is converted to discrete value sampled audio r[n]
through a uniform quantizer Q, with the impulse response q[n].

After the quantization step, the discrete real-valued signal

r[n] are converted into binary format by adc(·) function, which

is the ADC operation. The output of the sound card z(nd)
is a PCM signal, which is an uncompressed digital audio

signal. Most of the sound cards’ codecs do not do any further

processing like compression, which is usually performed in

the software. There are two types of compression techniques;

lossless (e.g., PCM, WAVE, etc.) and lossy (e.g., MP3, etc.).

The raw uncompressed PCM audio signals z(nd) can be

encoded using any encoder enc(·) to produce audio stream

y(ne).

B. Cascaded transform system model

Our main objective of recording system identification is

given L streams of encoded audio signal yl(ne), 1 ≤ l ≤ L
identify whether yl(ne) are recorded using the same micro-

phone/sound card system or a different one. More precisely,

we would like to classify reliably the encoded audio streams

yl(ne) according to the similarities of the microphone/sound

card system utilized for each 1 ≤ l ≤ L. In order to identify

different recording system the algorithm should be able to

extract unique characteristics of the recording systems. One

characteristics that is able to uniquely identify a recording

system from a model or manufacturer is the impulse response

of microphone/sound card system. If yl(ne) are recorded using

only one microphone/sound card system then the impulse

response of microphone/sound card system should be the same

for all the 1 ≤ l ≤ L. If they are not the same, then we should

see differences in the impulse responses. The main potential

difference of a specific manufacturer or model will come from

the microphone and possibly the manufacturing design of the

sound card, as well as, the type of the quantizer used. In

order to construct a realizable system for the digital recording

system identification purpose, we need to make reasonable

assumptions:

1) For all the recordings 1 ≤ l ≤ L the encoding and

decoding as well as analog-to-digital and digital-to-

analog converting will be the same. Therefore, it is

reasonable to assume that we have perfect knowledge

of enc(·) and adc(·) and their corresponding dec(·) and

dac(·) deterministic functions for 1 ≤ l ≤ L.

2) Also, we assume that process of adc(·), enc(·), dec(·)
and dac(·) introduce insignificant distortion to discrete

real-valued r[n] signal, such that the impulse response

of microphone/sound card system can be properly es-

timated from x[n], shown in Fig. 2 for identification

purposes. Therefore, we can assume x[n] = c× r[n] for

some constant c.
3) Ignoring any manufacturing defects, we can assume

that each device from the same manufacturer or model

should have the same fixed characteristics profile. There-

fore, the distinct characteristics of the model or man-

ufacturer can be captured in the impulse response of

model[n].

4) Assume the impulse response of the uniform quantizer Q
is invertable. We know that Q is non-invertible LTI and

non-linear system if non-uniform quantizer is involved.

5) Assume that the channel between the audio signal s(t)
and microphone is negligible and does not affect the

overall distortion operator.

6) Assume that the microphone impulse response h(t) is

an LTI system.

7) Since x[n] in Fig. 2 is in discrete time domain, without

loss of generality, the microphone’s continuous impulse

response h(t) and audio signal s(t) can be equivalently

viewed in discrete time domain as h[n] = h(nτs) and

s[n] = s(nτs), respectively. As a result, the m[n] ≃
h[n] ∗ s[n] becomes a valid argument, which allows us

to work in discrete time domain, instead of continuous.

8) Suppose that overall system distortion operator, D, is an

LTI system.

9) Ignore any errors due to other non-linear effects of the

mapping of input source s(t) to the output value y(ne) in

addition to sampler, quantization effects, adc(·), enc(·),
dac(·) and dec(·).
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Fig. 3: Blind deconvolution of an unknown LTI system.

We can therefore model the microphone’s discrete time

impulse response h[n] together with the impulse response of

the quantizer q[n] and impulse response of the manufacturer

or model sound card design model[n] as a cascade series

connection of impulse responses f [n] = h[n]∗ q[n]∗model[n]
in discrete time domain. Identifying f [n] through digital audio

recording identification algorithm is the same as identifying

different underlying recording systems. The resultant impulse

response of the system f [n] is also LTI, hence, the problem

reduces to blind deconvolution [9]. Blind deconvolution is

a technique that permits recovery of the source signal that

has been convolved (distorted) by the impulse response f [n].
Although source signal is unknown, we assume it is white,

stationary, independent and identically distributed (i.i.d.) pro-

cess applied to an LTI system. Since, it is an LTI system

then filter operation becomes convolution and we need to



find deconvolution (inverse) impulse response g[n] such that

c[n] =
∑

k f [k]g[n−k] = αδ[n−n0], where α is an arbitrary

non-zero scalar and n0 is a time shift. Fig. 3 represents the

blind deconvolution of an unknown LTI system. In literature,

deconvolution is used to estimate the source signal s[n]. The

approach is to first estimate the distortion parameters D by

treating s[n] as a nuisance parameter, and then deconvolve

x[n] with D to recover s[n]. In our case, we only need to

estimate distortion parameters D to identify the underlying

recording system.

C. Problem Formulation

In all the mentioned previous techniques they assume that

w[n] is an i.i.d. stationary process [10]. However, in our

recording system the audio source signal is highly correlated

and possesses non-stationary statistical characteristics. Hence,

the prior work proposed techniques mentioned above will not

work. Therefore, we look into highly correlated and non-

stationary methods to solve the blind deconvolution problem.

The most common approach to model non-stationary processes

is to represent the signal in the form of a stationary model, au-

toregressive (AR) model [11], [12] with time-varying parame-

ters. The audio source signal can be modeled as time-varying

autoregressive (TVAR) model and the impulse response f [n]
as an all-pole (AP) infinite impulse response (IIR) model.

AP(P) filter

f[n]w[n]

white noise

BSAR(Q)

source signal model

s[n]

audio source

x[n]

recording system model

Fig. 4: System model: the output, x[n], is a BSAR process,

s[n] is filtered by AP model with parameter a.

Our assumption of the model is a stochastic process that is

globally non-stationary, yet approximately locally stationary;

these can be represented by a quasi-stationary model. The

audio source signal, s[n], is modeled by a block stationary AR

(BSAR), which is given by (2). Here, s[n], is partitioned into

M contiguous disjoint blocks, block i ∈M,M = {1, ...,M}
with the length of Ni = ni+1 − ni. Within the block i,
beginning at sample ni, s[n] is assumed to be given by

stationary AR model of order Qi. The distortion impulse

response f [n], is modeled by an LTI (IIR) filter of order P
such that the x[n] is given in terms of s[n]. Consider, in block

i the preprocessed x[n] of a BSAR process s[n], which is

filtered by an all-pole model, as shown in Fig. 4. The equations

governing the above system model are expressed as

si[n] =−

Qi∑

q=1

bi[q]si[n− q] + wi[n]

xi[n] = −
P∑

p=1

a[p]xi[n− p] + si[n]





n ∈ Ni, (2)

where wi[n] ∼ N (0, σ2
i ), σ2

i ∈ R
+, Ni = {ni, ni +

1, ..., ni+1 − 1} such that s[n] = si[n], x[n] = xi[n], ∀n ∈
Ni ⊂ N . Define vector bi = {bi[q], q ∈ Qi = {1, ..., Qi}}
and a = {a[p], p ∈ P = {1, ..., P}}, which are the model pa-

rameters with Qi, P number of poles, respectively. Therefore,

the excitation samples in block i ∈M can be written as

wi = si + Sibi, (3)

where si = [s[ni], s[ni + 1], ... , s[ni + Ni]]
T , bi =

[bi[1], bi[2], ..., bi[Qi]]
T and the data matrix Si =

[̄s1, s̄2, ..., s̄Qi
], where s̄j = [s[ni− j], s[ni+1− j], ..., s[ni+

Ni− j]]T for 1 ≤ j ≤ Qi. The probability distribution for the

excitation in block i is therefore given by

wi ∼ Prwi
(wi | σ

2
i ) = N (wi | 0Ni

, σ2
i INi

)

=
1

(
√

2πσ2
i )

Ni

exp

{
−
sTi si

2σ2
i

}
. (4)

The probability chain rule is given by

Pr(s1, ..., sM ) = Pr(s1)

M∏

i=2

Pr(si | si−1, ..., s1). (5)

Since the BSAR process depends only on previous Qi outputs

such that if Qi ≤ Ni, then Pr(si | si−1, ..., s1) = Pr(si |
si−1). The probability chain rule (5) reduces to

Pr(s1, ..., sM ) = Pr(s1)

M∏

i=2

Pr(si | si−1). (6)

The likelihood function Pr(si | si−1) can not be obtained

without any prior information. Instead, we look into Pr(si |
si−1, σ

2
i ,bi), where we assume {σ2

i ,bi} is given. Since the

distribution of wi is independent of BSAR output and filter pa-

rameter {si−1,bi} then Prwi
(wi | si−1, σ

2
i ,bi) = Prwi

(wi |
σ2
i ). Using the transformation of multivariate random variables

we can write

Prsi(si | si−1, σ
2
i ,bi) =

Prwi
(w′

i | si−1, σ
2
i ,bi)

|J(si,wi | si−1, σ2
i ,bi)|

, (7)

where w′
i = si + Sibi. Given the fact that the filter op-

eration is linear with known {si−1, σ
2
i ,bi} parameters the

filter operation in (3) can be written as si = ei(wi |
si−1, σ

2
i ,bi) then the inverse filtering is expressed as follows

wi = e−1
i (si | si−1, σ

2
i ,bi). The Jacobian∗ becomes unity,

i.e., J(si,wi | si−1, σ
2
i ,bi) = 1. Therefore, the likelihood

function for the audio source signal, si, in block i ∈ M{−1}

is expressed as

Pr(si | si−1, σ
2
i ,bi) =

1

(
√
2πσ2

i )
Ni

× exp

{
−
(si + Sibi)

T
(si + Sibi)

2σ2
i

}
,

(8)

∗The Jacobian for the transformation y = f(x) is J(y,x) =
∣

∣

∣

δfT

δx

∣

∣

∣
.



where M{−1} denotes the set M not including the element

“1”. Denote σ = {σ2
i ; i ∈ M} and β = {bi; i ∈ M}.

Assuming that the {σ2
i ,bi} are independent between blocks,

such that si depends only on {si−1, σ
2
i ,bi} and not on

{σ2
j ,bj} for all j 6= i, then (6) can be written as

Pr(s1, ..., sM|σ,β)=Pr(s1 |σ
2
1 ,b1)

M∏

i=2

Pr(si |si−1, σ
2
i ,bi),

(9)

and if N1 ≫ Q1, which is often the case with audio signals,

it is common practice to approximate Pr(s1 | σ
2
1 ,b1) with

Pr(s1 | s0, σ
2
1 ,b1), where s0 is the initial values of audio

signal. Then we can write (9) as

Pr(s1, ..., sM | σ,β) =
M∏

i=1

Pr(si | si−1, σ
2
i ,bi). (10)

Similarly, the preprocessed signal x[n] in block i ∈M can

be written as

si = xi +Xia, (11)

where xi = [x[ni], x[ni + 1], ..., x[ni + Ni]]
T , a =

[a[1], a[2], ..., a[P ]]T and Xi = [x̄1, x̄2, ..., x̄P ] is the prepro-

cessed matrix, where x̄j = [x[ni− j], x[ni+1− j], ..., x[ni+
Ni − j]]T for 1 ≤ j ≤ P . Using the transformation of

multivariate random variables we can write

Prxi
(xi | si−1, σ

2
i ,bi) =

Prsi(s
′
i | si−1, σ

2
i ,bi)

|J(xi, si | si−1, σ2
i ,bi)|

, (12)

where s′i = xi + Xia. According to (11), si−1 depends

on {xi−1,xi−2,a} then equivalently we can rewrite (12) as

follows

Prxi
(xi | xi−1,xi−2, σ

2
i ,bi,a) =

Prsi(s
′
i | si−1, σ

2
i ,bi)

|J(xi, si | xi−1,xi−2, σ2
i ,bi,a)|

. (13)

Since the transformation is linear and with the given

xi−1,xi−2, σ
2
i ,bi,a parameters, is can be easily shown that

J(xi, si | xi−1,xi−2, σ
2
i ,bi,a) = 1. Therefore, the like-

lihood function for the preprocessed signal, xi, in block

i ∈M{−1,−2} in terms of {si, si−1, σ
2
i ,bi} can be expressed

as

Pr(xi | xi−1,xi−2,σ
2
i ,bi,a) =

1

(
√
2πσ2

i )
Ni

× exp

{
−
(si + Sibi)

T
(si + Sibi)

2σ2
i

}
,

(14)

whereM{−1,−2} denotes the setM not including the element

“1” and “2”. Since xi depends only on {xi−1,xi−2, σ
2
i ,bi,a}

then Pr(xi | xi−1,xi−2, ...,x1, σ
2
i ,bi,a) = Pr(xi |

xi−1,xi−2, σ
2
i ,bi,a) and {σ2

i ,bi} are independent between

blocks, i.e., xi does not depend on {σ2
j ,bj} for all j 6= i,

then (14) can be written as

Pr(x1, ...,xM | σ,β,a) = Pr(x1 | σ
2
1 ,b1,a)

× Pr(x2 | x1, σ
2
1 ,b1,a)

×
M∏

i=3

Pr(xi | xi−1,xi−2, σ
2
i ,bi,a),

(15)

and if N1, N2 ≫ P , we can approximate Pr(x1 | σ
2
1 ,b1,a)

and Pr(x2 | x1, σ
2
1 ,b1,a) with Pr(x1 | x0,x−1, σ

2
1 ,b1,a)

and Pr(x2 | x1,x0, σ
2
1 ,b1,a), respectively, where x0 and x−1

are the initial values of the preprocessed signal.

Then we can write (15) as

Pr(x1, ...,xM | σ,β,a) =
M∏

i=1

Pr(xi | xi−1,xi−2, σ
2
i ,bi,a)

=

M∏

i=1

Prsi(s
′
i | si−1, σ

2
i ,bi)

=
M∏

i=1

N (wi | 0Ni
, σ2

i INi
), (16)

where 0N and IN are all-zero column vector with dimension

of N by 1 and identity matrix with dimension of N by N ,

respectively.

If we let θ = {σ,β,a}, i.e., the parameters to be estimated

be fixed and unknowns, we can apply maximum-likelihood

(ML) estimation, which aims to maximize Pr(x1, ...,xM | θ)
with respect to θ. The ML approach for parameter estimation

is presented next.

III. DIGITAL RECORDING SYSTEM IDENTIFICATION

A. Audio Recording Identification Algorithm

Our approach to solve the problem of estimating the distor-

tion impulse response f [n] of the unknown system, which in

our model is parameterized in a, is to maximize (16) in terms

of θ = {σ,β,a}. We let the parameters θ = {σ,β,a} of

(16) be unknown, but fixed.

Let y[n] be the output signal of the AR filter, bi, in block

i, for the input signal x[n], which can be expressed as

yi[n] =

Qi∑

q=1

bi[q]xi[n− q] + xi[n]. (17)

We can apply the AP filter, a, to obtain the excitation signal

wi[n], expressed as

wi[n] =
P∑

p=1

a[p]yi[n− p] + yi[n]. (18)

Therefore, the expression in (3) is equivalent to

wi = yi +Yia, (19)

where yi = [y[ni], y[ni + 1], ... , y[ni + Ni]]
T and the data

matrix Yi = [ȳ1, ȳ2, ..., ȳP ], where ȳj = [y[ni − j], y[ni +
1− j], ..., y[ni +Ni − j]]T for 1 ≤ j ≤ P .



Using the likelihood function (16) the ML expression is

given by

θ̂ = arg max
θ

Pr(x1, ...,xM | θ). (20)

We consider the partial derivative of (20) with respect to

{σ2
i ,bi} for 1 ≤ i ≤M and parameter a. Since {σ2

i ,bi} are

independent among the blocks, the ML solution is given as

follows,

b̂i = −(S
T
i Si)

−1ST
i si, (21)

σ̂2
i =

wT
i wi

Ni

, (22)

â = −

(
M∑

i=1

YT
i Yi

σ2
i

)−1
M∑

i=1

YT
i yi

σ2
i

, (23)

where yi = xi+Xibi. The results are in terms of preprocessed

signals {x1, ...,xM} and the unknown parameters {σ,β,a},
which is considered as conditionally optimal ML. The {σ,β}
parameters are not needed for our purpose, which can be

considered as nuisance.

The ML algorithm can be performed using the following

steps. Initialize â arbitrarily (or by an educated guess, if side

information is available), compute b̂i, σ̂
2
i for 1 ≤ i ≤M and â

iteratively to obtain at each step the conditionally ML optimal

estimates of the parameters given by other estimated parame-

ters. Stop when convergence is observed. The conditional ML

(CML) algorithm is summarized below. Superscripts denote

the iteration index.

Conditionally ML algorithm (CML)

Input: Initialize: k ← 0; generate â arbitrarily.

1: k ← k + 1;

2: for i← 1 to M

3: b̂
(k)
i ← −((S

(k−1)
i )TS

(k−1)
i )−1(S

(k−1)
i )T s

(k−1)
i

4: (σ̂
(k)
i )2 ←

(w
(k−1)
i

)Tw
(k−1)
i

Ni

5: â(k) ← −

(
M∑

i=1

(Y
(k)
i )TY

(k)
i

(σ
(k)
i )2

)−1
M∑

i=1

(Y
(k)
i )Ty

(k)
i

(σ
(k)
i )2

6: repeat until ‖â(k) − â(k−1)‖2F < ∆

Output: â(k)

where ∆ denotes a small scalar value, s
(k−1)
i = xi+Xia

(k−1),

w
(k−1)
i = s

(k−1)
i + S

(k−1)
i b

(k)
i and y

(k)
i = xi + Xib

(k)
i .

The convergence of the CML in general is not guaranteed.

Convergence of the iterative procedure depends on a proper

initialization point. Certainly, availability of prior information

can facilitate the choice of a good initialization point, which

in turn can increase the possibility for global (and fast)

convergence.

Applying Baye’s rule to (16) we can obtain the pos-

terior probability density function for unknown parameters

{σ,β,a}. Since we are interested in estimating underlying

recording system, parameter a, the nuisance parameters σ

and β are marginalized. A marginal maximum a posteriori

(MMAP) estimate for the parameter a can be calculated by

â = arg max
a

Pr(a | x1, ...,xM ,σ,β). (24)

In principle, an MMAP for the unknown channel parame-

ters, a, can be formed by solving (24). The optimization can be

performed using deterministic or stochastic optimization meth-

ods. Since sampling from the distribution in (24) is difficult,

estimates of the parameter, a, are obtained using Markov chain

Monte Carlo (MCMC) routines, such as the Gibbs sampler

[13]. The Monte Carlo method can the used to marginalize

the nuisance parameters σ and β. Similarly, we can solve

(24) using the extensions of expectation-maximization (EM),

stochastic approximation EM (SAEM) [14] or Monte Carlo

EM (MCEM) [15] methods. All of the mentioned methods

have polynomial complexity in the number of estimated pa-

rameters.

For system identification purposes, we consider the roots

r̂, which correspond to the estimated coefficients, â, obtained

by the proposed CML algorithm. The estimated roots of the

stationary poles of a specific impulse response would be

concentrated in particular fixed regions in a complex plain.

Estimates of the poles of different distortion filters would

correspond to different fixed regions and therefore can be

identified. Our problem now becomes more accurate compared

to those fixed regions that correspond to distortion filters

and we can differentiate them according to the location of

the fixed regions. If the estimated poles of two different

stationary distortion filters have their fixed regions very close

to each other then they correspond to the same distortion filter,

otherwise different. The sets of roots of the poles of similar

and different filters as an example are shown in Figs. 5 and 6.

For the case of similar microphones, as can be seen from Fig.

5, most of the poles are almost overlapping with each other

indicating same microphone is detected while for the case of

different microphones, as can be seen from Fig. 6, the poles

are further away from each other, which indicates that different

microphones have been used to perform the recordings.

B. Nearest Neighboring Based Clustering

The idea is to cluster poles of each distortion impulse

response according to their fixed regions. We develop a simple

neighboring rule that takes two sets of poles and tries to find

the fixed regions of each set. In particular, we first construct

the set of estimated roots, Rl ∈ {r̂l(u);u ∈ U = {1, ..., U}}
for 1 ≤ l ≤ L, where L is the number of distortion impulse

response being estimated and U is the number of estimates

of parameter â for a given l, which is returned by the CML

algorithm. Before we describe the algorithm let us define a

histogram in the complex plane as

Hl(y, x) = |{r̂l(p, u) ∈ x+ jy ∀p ∈ P, u ∈ U}|, (25)

where Hl ∈ N
Y×X , 1 ≤ x ≤ X , 1 ≤ y ≤ Y , j is imaginary

number, and X,Y ∈ N. The higher the value of a point

in the histogram means the more likely that it corresponds



to a certain fixed regions of an impulse response. It can be

concluded from the observation of poles in complex plane

that Hl contains many zeros. Now, let us define a sum over a

small region of Hl histogram as follows

sl(y, x) =
∑

y′,x′∈Ly,x

Hl(y
′, x′), (26)

where Ly,x = {y′, x′|y − r ≤ y′ ≤ y + r, x − r ≤ x′ ≤
x+ r}, r ∈ N, which defines a square around the center point

(y, x) in Hl. This sum represents the number of points lying

in a complex plane around the center point (y, x). The value

of r can effect the decision of the fixed region and hence,

can be properly chosen to serve our purpose. The histogram

of the poles corresponding to a particular distortion impulse

response have most of its reliable estimated poles located at

small region and unreliable estimated poles are in a larger

region. The convergence estimates that are concentrated in a

fixed region are close to the true poles. Our task now is to

locate those reliable estimated poles in a histogram that belong

to the fixed regions of the poles as close as possible.

The basic idea behind our approach is to search those

reliable estimated poles among all the poles returned by

the proposed CML algorithm. However, in audio recording

system identification problem, the locating of such reliable

estimates is not an easy task, due to the lack of knowledge of

true parameters and priori information. The reliable estimated

poles can be identified by examining the sl(y, x) defined

by (26). The sl(y, x) not only takes into consideration the

Hl(y, x) value but around that point, which is a reasonable

measure. In order to decide whether Hl(y, x) belongs to a

fixed region we compute sl(y, x) and it compare to an upper

threshold hl, which is a design parameter. If Hl(y, x) > hl

then we can consider Hl(y, x) belongs to the fixed region of

the distortion impulse response.

The comparison of roots in complex plane in terms of fixed

regions of impulse responses can be performed in pairwise

fashion. For example, let us take H1 and H2 to make the

comparison. For each point in H1 we compute s1(y, x) and the

corresponding s2(y, x), if both s1(y, x) > h1 and s2(y, x) >
h2 are satisfied for each (y, x) then the stationary poles belong

to the same fixed region, hence, the impulse response is

the same, otherwise, it is different. A reasonable measure is

utilized for a reliable identification, which is summarized in

Criterion 1 below.

Criterion 1: Classifying histogram of estimated poles

If both s1(y, x) > h1, s2(y, x) > h2, ∀{y, x} ∈ Ly,x and

H1(y, x) < h̄1, H2(y, x) < h̄2 ∀{y, x} /∈ Ly,x conditions

are satisfied then declare them similar or “1”. Here h̄1 and

h̄2, lower thresholds are design parameters. Otherwise, if the

condition are not satisfied that means the two histograms

H1 and H2 do not have common reliable estimated poles

and hence, they have different distortion impulse response

functions, declare them not similar or “2”.

To address our goal of identifying the recording systems,

we now present a complete description of the algorithm.

Assume we are given L recorded audio source files from

different/similar microphone recording systems. We take each

audio files (e.g., MP3, WAV) and preprocess to obtain xl for

1 ≤ l ≤ L. For each xl, we run the proposed CML algorithm

for U times to produce stationary poles rl(u), 1 ≤ u ≤ U . We

create Hl from rl, 1 ≤ l ≤ L then utilizing the Criterion 1,

we can identify the reliable poles and classify those estimated

poles according to their difference/similarity. Eventually, this

algorithm classifies each recorded audio files according to their

distortion impulse response of microphone/recording system.

The ML-nearest neighbor based audio recording identifica-

tion algorithm (ML-NNA) that returns expected classes Ĉ of

L audio recordings is presented below.

ML-Nearest Neighbor Algorithm (ML-NNA)

Input: Initialize: Ĉ ← {1, ..., L} classes

1: for l← 1 to L− 1
2: for m← l + 1 to L
3: run CML to obtain {âl(u);u ∈ U}
4: compute roots r̂l(u) for 1 ≤ u ≤ U
5: run CML to obtain {âm(u);u ∈ U}
6: compute roots r̂m(u) for 1 ≤ u ≤ U
7: compute Hl and Hm, from r̂l and r̂m by (25)

8: if Criterion 1 is satisfied; then Ĉ(m)← Ĉ(l)

Output: Ĉ

Integers in Ĉ represents the classes; if all the integers are

the same that means the audio recording files are recorded

with similar recording system and if the integers are not the

same that means some or all the audio files are recorded using

different recording systems.

IV. EXPERIMENTAL RESULTS

In order to assess the performance of the proposed algorithm

for identification of device similarity, experiments were con-

ducted in a laboratory environment. Speech recordings from

15 different speakers using two different microphones, L-

Logitech Stereo Headset H111 and P -Philips PH62080 Uni-

directional Microphone are used. Audio is recorded as MP3

mono audio files in the same laboratory using 44.1 kHz

sampling rate and 16 bit quantization, and we assume that

the acoustical environment does not change.

The estimate â obtained from the ML algorithm is based on

the assumption that we have perfect knowledge of the exact

model and parameters. However, the nature of identifying the

underlying recording system problem prohibits us to have any

knowledge of the model parameters (e.g., P,Qi, Ni, 1 ≤ i ≤
M ). Therefore, we look into a heuristic methods to choose

proper model parameters for identification purposes. As an

example, AR(80) BSAR process can be used to model speech

signal and AP (68) process to model distortion filter. To model

quasi-stationary signal M = 500 blocks of length Ni = 350
can be used, note that natural speech is locally stationary in

every 25ms [16].
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Fig. 5: Philips microphone - proposed CML.
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Fig. 6: Logitech and Philips microphones - proposed CML.

Through extensive experimentation, we discovered that us-

ing the AR(2) BSAR to model the speech signal and AP (13)
to model the distortion filter serves well for our identification

purposes. In our experiments, we selected M = 250 blocks of

length Ni = 940.

We recorded 400 MP3 recordings using 15 different speak-

ers for each microphone. In this manuscript, we illustrate

the performance of the proposed CML algorithm that is

compared to Gibbs sampler, SAEM, and MCEM algorithms

for classifying the same microphone (P and P ) and different

microphones (P and L).

The proposed CML algorithm in Figs. 5 and 6, demonstrates

the classifications of two different speakers recorded with the

same Philips microphone P and one speaker using Logitech

L and Philips P microphones, based on MP3 files alone.
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Fig. 7: Philips microphone - SAEM.
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Fig. 8: Logitech and Philips microphones - SAEM.

We can observe from Fig. 5 using similar filters the sets of

roots are closer to each other compared to the one using two

microphones, as shown in Fig. 6. Similar performances can be

seen for SAEM, MCEM and Gibbs Sample, shown in Figs. 7

and 8, Figs. 9 and 10, Figs. 11 and 12, respectively.

In order to have better judgment on the performance of

each estimators, we measure the accuracy of the classification

algorithm using total of 1600 MP3 files about 30s long each

that are recorded using the two microphones. In Table I, we

compared the accuracy of the proposed CML classification

algorithm with SAEM, MCEM, and Gibbs estimators. The

accuracy of classifying the same microphone P , and detecting

difference between the two microphones P and L using the

proposed CML estimator is slightly higher than those using

the SAEM, MCEM and Gibbs estimators.
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Fig. 9: Philips microphone - MCEM.
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Fig. 10: Logitech and Philips microphones - MCEM.

TABLE I: Accuracy of different estimators

Estimators Rec. Systems Accuracy (%)

Proposed CML P & P 99.28

SAEM P & P 97.46

MCEM P & P 96.23

Gibbs P & P 93.46

Proposed CML L & P 99.51

SAEM L & P 97.16

MCEM L & P 95.89

Gibbs L & P 94.24
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Fig. 11: Philips microphone - Gibbs samppler.
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Fig. 12: Logitech and Philips microphones - Gibbs sampler.

V. CONCLUSION

We presented a novel digital recording system identification

system where no prior information is provided and it is

based on audio files alone. The non-stationary audio source

is modeled as a block stationary AR (BSAR) and cascaded

impulse response of the recording system, which accordingly

is modeled as an all-pole (AP) infinite impulse response (IIR)

filter. We then proposed a conditionally maximum-likelihood

(CML) algorithm to estimate the coefficients of the unknown

AP distortion filter. To determine the difference or similarity

of the recording system being analyzed, namely the distortion

filter from CML, we developed a novel nearest neighborhood

algorithm to cluster poles of the AP filter. Experimental results

demonstrate high accuracy, over 99.2%, in identification of the

recording devices using the proposed scheme.
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