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ABSTRACT

In this paper, we study the classification of human activity on the sur-
face of a body of water using sonar. In particular, we investigate the
classification of three different swimming styles; freestyle, butterfly,
and backstroke. Experiments are conducted in a swimming pool to
capture acoustic micro-Doppler signatures produced by the different
swimming styles. Two acoustic hydrophones are used underwater;
one to transmit a single tone signal in the direction of a swimmer
and the other to receive the reflected waveform from the swimmer’s
body. We apply joint time-frequency analysis on the received acous-
tic signal to extract the micro-Doppler signatures present in the spec-
trogram. Each of these swimming style activities presents their own
unique micro-Doppler signatures. To classify the acoustic micro-
Doppler signatures, we explore a deep convolution neural network
(DCNN) algorithm. Spectrogram can be considered as an image in
which case applying DCNN can serve well for feature recognition
purposes. We show that using the spectrogram images the DCNN
algorithm can classify different swimming styles performed on the
surface of the water with fairly high accuracy. Using the collected
data set, we performed experiments where we used 80% of the data
for training and the remaining 20% for validation purposes. The
DCNN algorithm averaged 93.7% accuracy during training while it
had a 90.8% average validation accuracy.
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1. INTRODUCTION

Detection and classification of human activity on the water surface
are essential in surveillance, border patrol, and search-and-rescue
operations [1, 2]. Furthermore, it can be useful to detect a drown-
ing person in a swimming pool. Some research has been conducted
on human detection and activity classification on land using radar
micro-Doppler signatures [3, 4], but underwater human detection
and activity classification has not been extensively studied. When
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illuminated by sonar, humans produce micro-Doppler signatures due
to moving limbs. The micro-Doppler signatures for different activi-
ties are unique and therefore can be used to detect and classify hu-
man activity [S]. A number of research works have studied classifi-
cation of human activities and objects using different methods. In the
following paragraphs, we briefly discuss some of the related works.

Balleri et al. in [6], use an ultrasound radar system to collect
micro-Doppler signatures of personnel targets performing different
actions. For training and recognizing the different human motions,
k-nearest neighbor (kNN) and Naive Bayesian classifiers are used.
Experimental results show that acoustic radar can successfully be
used over short ranges to collect micro-Doppler signatures of mov-
ing target and classify them.

Victor et al. in [7], explore convolution neural network (CNN)
to automatically detect discrete events in continuous video such as
swimming strokes. The CNN algorithm is employed to learn a map-
ping from a window of frames to a point on a smooth 1D target
signal in which the peaks denote the location of a stroke. Exper-
imental results show that with fairly high accuracy over 90% they
were able to locate stroke spikes.

Williams in [8] uses deep convolution neural network (DCNN)
for underwater target classification in synthetic aperture sonar (SAS)
imagery. Objects such as dummy mine shapes, mine-like targets
and man-made objects were deployed on the seafloor. Sonar surveys
are conducted over the area with an autonomous underwater vehicle
(AUV) to gather the data. The collected data was processed to pro-
duce scene-level SAS images. Within these images the differences
between similar classes of object were learned by DCNN.

Einfalt et al. in [9], estimate human pose in real-world videos of
swimmers. CCN algorithm is applied to infer the required pose in-
formation such as different swimming styles for detection and classi-
fication of different body joints. Evaluations of the proposed scheme
demonstrated an average accuracy of 95.7% for classifying different
swimming styles.

Kashyap ef al. in [10], present the micro-Doppler signatures of
two underwater unmanned vehicles (UUV) from simulated acoustic
radar data. The UUV and the radar are assumed to be fully sub-
merged in underwater. The radar scattered return signals are gener-
ated using primitive based modeling of the vehicles at 30 kHz. Two
types of motion are considered; vehicles moving tangentially with
respect to the radar and others moving towards the radar. Simula-
tion results of a simple model show that different UUVs demonstrate
unique micro-Doppler features that is a function of the length of the
propeller blades, their rotation rate as well as the orientation of the
target motion with respect to the radar.

Zhu et al. in [11], present an automatic target recognition for sonar
on board of UUVs. Target features are extracted by the CNN algo-
rithm operating on sonar images then support vector machine (SVM)
is used to classify them. Matched filter is used in target recognition



while the target classification is achieved with the trained SVM clas-
sifier based on feature extracted by the CNN algorithm.

Park et al. in [12], employ DCNN algorithm for human aquatic
activity classification based on radar sensor. Human activity is col-
lected in a form of micro-Doppler spectrograms, which are used in
the DCNN for training and classification purposes. It is reported
that the convolutional feature-based scheme has fairly low accuracy
45.1%. Applying transfer learning on pre-trained data and fine tun-
ing the DCNN parameters, the accuracy was improved to 80.3%.

Unlike the previous studies, which mainly focus on detection and
classification of human activity using radar, video images and sonar
based on simulations only; in this work, we experiment the classifi-
cation of human activity on the surface of a body of water based on
acoustic micro-Doppler signatures and deep learning. After applying
joint time-frequency analysis, we observe the micro-Doppler signa-
tures present in a spectrogram. We investigate classification of three
different swimming styles; freestyle, butterfly, and backstroke. Ex-
periments are conducted in a swimming pool to collect a data set of
spectrograms, which contain the micro-Doppler signatures present
in different swimming styles. We develop a sonar system by deploy-
ing two Teledyne RESON TC4013 hydrophones [13] in the swim-
ming pool used for collecting the reflected acoustic waveforms. The
signals from the acoustic sensor are digitized by universal software
radio peripheral (USRP) N210 [14] data acquisition board with the
sampling rate of 195 kS/s. The experimental data are collected, pre-
processed and analyzed in Matlab. Each of this swimming style ac-
tivity presents their own micro-Doppler signatures. To recognize the
micro-Doppler signatures, we explore DCNN technique, which is
considered one of the most successful deep learning algorithms for
image recognition [15]. Spectrogram can be considered as an image
thus they can be used in the DCNN algorithm for the feature recog-
nition. From the underwater measured data, we crop and collect the
individual spectrograms of different swimming style strokes. 80%
of data are used for training purposes and the remaining 20% are
used for validation. We show that the DCNN algorithm can classify
human activity on the surface of water based on spectrograms with
high accuracy. Our experimental results based on the underwater
collected data reveal that the training accuracy was 93.7%, and the
validation accuracy was 90.8%.

The rest of the paper is organized as follows. In Section 2, we
discuss the basic principle of micro-Doppler signatures generated by
the different swimming styles, followed by the experimentation of
underwater human activity classification with Doppler sonar in Sec.
3. The DCNN algorithm is presented in Sec. 4. After illustrating our
experimental results in Sec. 5, we draw our main conclusions and
provide future extensions to our proposed work in Sec. 6.

2. MICRO-DOPPLER MODELING

In this section, we discuss the basic mathematical model of the
micro-Doppler phenomenon induced by vibrational motions.

Rotation can be considered as a special case of vibration. In co-
herent sonar, the variations in range results in a phase change in the
returned signal from a target. Therefore, the Doppler frequency shift
in the reflected signal, which represents phase variations with time,
can be used to measure the vibrations and rotations of a reflecting
surface [5].

Different swimming styles are as a result of unique underwater
movement patterns of the swimmer’s limbs. These motions can be
captured when illuminated by a sonar. When a sonar device trans-
mits a single tone acoustic signal from underwater at a carrier fre-
quency f. onto a swimming person, the reflected signal contains
micro-Doppler effects centered around the f., due to micro-motion
variations of the swimmer.

The received Doppler signal as a function of time is modeled as
[5] |

s(t) = Ae](%fctﬂa(t))’ )
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where A is the reflectivity of the vibrating point scatterer and p(¢) is
the time-varying phase change of the vibrating scatterer. Assuming
the vibrating scatterer is set to oscillate at a frequency of f,, the time
varying phase can be expressed as

@(t) = Bsin(2m fut), 2

where 8 = 47D, /A, D, is the amplitude of the vibration and X is
the wavelength of the transmitted signal.

Since (1) is a periodic function, it can be expanded using Fourier
series as

s() =AY enel T 3

n=-—oo

where c¢,, is the Fourier series coefficient, which is expressed as

cn 1 / 6jBSin(2wfyt>67jn2ﬂfutdt — Jn(ﬂ)y (4)
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where J,, () is the nth-order Bessel function of the first kind.
Substituting (4) into (3) yields

s(t)y=A Y Ju(B)e?retnit )

n=-—oo

Equation (5) represents a micro-Doppler frequency spectrum con-
sisting of pairs of harmonic spectral components centered around the
carrier frequency f.. The spacing between the adjacent spectral lines
is governed by f,. Since the phase of the reflected wave expressed
in (2) is time-varying, the instantaneous frequency fp, which repre-
sents the micro-Doppler frequency induced by the vibrations of the
scatterer, can be expressed as

fp = %% = B focos(27 fit) (6)
= %D,}fucos(%rfut). @)

The maximum micro-Doppler frequency change is 47"D,, fos
which can be used to estimate the maximum displacement of a vi-
brating scatterer. The micro-Doppler caused by vibration is a sinu-
soidal function of time at the vibrating frequency f,. Those micro-
Doppler variations reflected from a swimmer can be used for detec-
tion and classification of different swimming styles.

3. UNDERWATER EXPERIMENTATION OF
HUMAN ACTIVITY DETECTION

In this section, we analyze the possibility of detecting human ac-
tivity namely identifying three different swimming styles from un-
derwater using a sonar system.

The different swimming styles are captured as acoustic micro-
Doppler signal using two Teledyne RESON TC4013 hydrophones
of 170 kHz bandwidth, which are used as acoustic transmitter (Tx)
and receiver (Rx). The two hydrophones, separated by 20 cm from
each other, are deployed 30 cm below the surface at the deeper end of
the swimming pool. An open-source software development toolkit
GNU Radio [16] is used to generate and transmit a sinusoidal signal
at 40 kHz through the Tx hydrophone. The waveform generated by
the GNU radio transmitter, shown in Fig. 1, is transmitted through
the USRP N210 Tx using a special peripheral LFTX daughterboard
operating at the frequency range 0 — 30 MHz. A pre-amplifier (HP
467A Power Amplifier) is used to first amplify the signal generated
by the USRP N210 Tx before transmitting the acoustic signal.

At the receiver side, the Rx hydrophone captures the transmitted
40 kHz waveform, which is first fed into a post-amplifier (Teledyne
RESON VP2000 Voltage Preamplifier [17]) then the received signal
is collected by the USRP N210 Rx using the LFRX daughterboard
and it is controlled by the GNU Radio Rx software. The GNU Radio
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receiver diagram is shown in Fig. 2.
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The experimental flowchart demonstrating the different proce- (c) Backstroke.
dures carried out in the transceiver side is shown in Fig. 3.

Figure 4: Swimming style spectrogram snapshots:
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4. ACOUSTIC MICRO-DOPPLER CLASSI-
FICATION WITH DEEP LEARNING

Hydrophone Acoustic Hydrophone A number of advapced Qeep learning algorithms have bgen devel-
(Receiver) N Channel N (Transmitter) oped for image classification [4, 3, 15, 18, 19]. A generalized CNN
architecture is shown in Fig. 5, where it extracts features from the
training images and then generates classifiers. The classifier weights
are determined via the training process. The produced output y,
Post-Amplifier | | Received Signal | | GNU Radio shown in Fig. 5, is compared with the input data d and the error
(Low Pass Filter) (USRP Rx) (Receiver) information e is fed back to the algorithm to update the weights and

improve the classification process. In general, 80% of data is used
for training purposes, and the remaining 20% for validating the CNN

algorithm [20].
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Figure 3: Experiment setup flowchart.

The collected received raw data is analyzed in Matlab. Fast
Fourier transform (FFT) size of 256 with a step size of 10 was used
in the experiment. After mixing the received data with the transmit-
ted signal and passing it through a low pass filter (LPF) to remove
the carrier frequency harmonics, we apply time-frequency analysis.
Figure 4 shows three samples of different spectrograms of swimming
styles for a) Freestyle, b) Butterfly and c) Backstroke.

The unique characteristics can be seen in Fig. 4. As an example,
the spectrogram shown in Fig. 4(a) contains 8 samples of freestyle
swimming patterns. The micro-Doppler variations are observed to
be in the range from 0 — 100 Hz. Each of these micro-Doppler a
patterns in the spectrogram plot are manually cropped into images
of size 300 x 140 pixels for training and classification purposes in
the deep learning algorithm, which is discussed next.

Training Data
{Input, Correct
Output}

Figure 5: Generalized network of CNN.
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Figure 6: Architecture of the DCNN algorithm implemented in Matlab.

To classify the different swimming styles, we implement a DCNN
algorithm in Matlab as follows. The captured spectrogram images
are first re-sized from 300 x 140 pixel to 100 x 100 pixel RGB im-
ages with three classes, 1 — 3. The input images undergo feature
extraction network by first being processed by the convolution layer
consisting of 10 convolution filters of size 20 x 20. The output from
the convolution layer goes through the rectified linear unit (ReLU)
function followed by the pooling layer, which employs max pooling
process of 2 x 2 matrices. This process is repeated several times
to create the output and train the machine with inherent features of
the image. The output of the pooling layer is fed into a second con-
volution layer consisting of 20 convolution filters of size 10 x 10.
Similarly, after passing the output through the ReLU function it un-
dergoes the pooling layer with max pooling size of 2 X 2 matrices.

The max pooling concept is demonstrated in Fig. 7. Stride is the
sliding window operation, used in the convolution layer and in the
max pooling operation in which case the stride is 2. Max pooling is a
downsampling process in which it selects the maximum value from
each view. Since the spectrogram images contain sharp edges max
pooling instead of average pooling is used to extracts the most im-
portant features like edges. The classifier network consists of a fully
connected layer comprised of 100 hidden nodes, which produce a
Softmax output that is used for classifying the three different swim-
ming styles. The architecture of the DCNN algorithm implemented
in Matlab is shown in Fig. 6.

Single depth slice
1 1|5

Max pool with 2x2 filters
and stride 2 4 6

6|1
1|2 8|3
2|3

3
0] 4
4 |7
8| 2

Figure 7: Max pooling principle.

S. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
swimming styles classification scheme. The experimental setup is
shown in Fig. 8.

Three different swimming styles are captured by the sonar system
presented in Section 3. A swimmer of height 168 cm and weight 77
kg swims multiple times different swimming styles from the shallow
water side of the pool towards the sonar system submerged in the
deeper side of the pool. The distance from the starting position of
the swimmer to the sonar system is about 20 m. The surface area
of the pool was about 550 m?. For each swimming style, we collect
100 samples of swimming style strokes, i.e., a total of 300 samples
of spectrogram images. Out of these 300 images 240 are used for
training and the remaining 60 for validation purposes.

The proposed DCNN algorithm discussed in Section 4 is imple-
mented in Matlab to classify the three swimming styles. We used
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Figure 8: Experiment setup.

Dell Latitude E547 laptop with an 8th Generation Intel Core i7 pro-
cessor for running the deep learning algorithm. The training algo-
rithm is experimented with batch processing and stochastic gradient
descent (SGD) algorithm with momentum. In the batch process-
ing, each weight update is calculated for all errors of the training
data, and the average of the weight updates is used for adjusting the
weights. This method uses all of the training data and updates only
once. The SGD algorithm on the other hand, calculates the error
for each training data and immediately adjusts the weights. As an
example, if we have 1000 training data points, the SGD adjusts the
weights 1000 times.

Figure 9 shows the average training error versus epoch. One epoch
is when the entire training data set is passed forward and backward
through the neural network once. Since the training data set is often
limited, in practice, multiple epochs are utilized to allow the learning
algorithm to run until the error from the model is sufficiently mini-
mized. The SGD algorithm with momentum is observed to outper-
form the batch processing, as shown in Fig. 9. To reach an average
training error of 0.08 batch processing requires 48 epochs while the
SGD algorithm needs only 11 epochs. SGD algorithm with momen-
tum helps to accelerate gradients vectors in the right directions and
dampens oscillations. Thus, as we can see from Fig. 9, it leads to a
faster convergence.

In the DCNN algorithm, the convolution layers are defined with
the batch normalization and the ReLU layers. The batch normaliza-
tion layer helps to normalize the input layer by adjusting and scaling
the activations, which can speed up the learning process. The ReLU
layer captures interactions and non-linearities and can greatly accel-
erate the convergence of the SGD algorithm. Moreover, the convolu-
tion layers of the DCNN algorithm can be modified according to the
needs of experimentation. The proposed DCNN algorithm is used to
train those swimming styles depicted by the spectrograms. A data
set of 300 spectrogram images are used to classify the 3 different
swimming styles; freestyle, butterfly and backstroke.
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In Fig. 10, we plot the training and validation accuracy of the
DCNN algorithm versus epoch. The batch size used for the train-
ing purposes is selected to be 10, which results in 300/10 = 30
iterations per epoch. In other words, the weights of the neural net-
work are updated 30 times after each epoch. A total of 50 epochs
are used for data training, which results in a total of 1500 iterations.
From the experimental results, we can see that an average training
accuracy of 93.7% was achieved, and the average validation accu-
racy was 90.8%. To overcome the overfitting problem the validation
accuracy and training accuracy graphs should be close to each other.
As we can see in Fig. 10, at the final simulation round the average
training and validation accuracy are fairly close to each other.

6. CONCLUSION AND FUTURE WORK

In this paper, we experimented classification of three swimming
styles using acoustic sonar. Experiments were conducted in under-
water to capture the micro-Doppler signatures present in the swim-
ming styles using hydrophones and software defined radios. After
collecting the raw data, time-frequency analysis is applied to extract
the spectrogram images corresponding to the three different swim-
ming styles. Deep convolution neural network (DCNN) algorithm
is implemented in Matlab to classify the three different swimming
styles using the micro-Doppler spectrogram images as input to the
algorithm. Experimental results reveal that an average training ac-
curacy of 93.7% is achieved, and the average validation accuracy
was 90.8%. While we have focused on collecting data samples from
a single swimmer, in the future, we will gather data from multiple
swimmers. We will also experiment when the swimmer is swimming
away from sonar not just towards the sonar. This work can also be
extended for detection and classification of a drowning person, fish,
marine mammals, submarines and AUVs.
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