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Abstract

How many ways can a chess Rook or Queen move from a corner

cell to the opposite corner cell of an arbitrary size, arbitrary dimen-

sional chessboard, assuming that the piece moves closer to the goal

cell at each step? Recurrence relations, generating functions, and

asymptotic formulas have already been given for Rook paths in di-

mension 2. We revisit these and determine similar results for Queen

paths. We also describe some results and open questions concern-

ing the number of Rook and Queen paths in higher dimensions. As

a consequence of our analysis, we find an asymptotic formula for

the number of Nim games that start with an arbitrary number of

equal-size piles of stones.

A chess Rook can move any number of squares horizontally or vertically
in one step. How many paths can a Rook take from the lower-left corner
square to the upper-right corner square of an 8 × 8 chessboard? Assume
that the Rook moves right or up at each step. An example of a Rook path
is shown below.

More generally, we can count lattice paths from (0, 0) to (n, n) with
steps of the form (x, 0) or (0, y), where x and y are positive integers. Some



similar problems are well known. For example, central Delannoy numbers
count the number of King paths, i.e., where the steps are of the form (1, 0),
(0, 1), or (1, 1); Catalan numbers count paths that move in steps of (1, 0)
or (0, 1) and never go above the line y = x; and Schröder numbers count
King paths that do not go above the line y = x. [8]

The Rook path problem is simply solved by generalizing to find the
number of paths from (0, 0) to any given square on an arbitrary size board,
that is, to any point (m, n). Let a(m, n) be the number of such paths, where
m, n ≥ 0. We decree that a(0, 0) = 1. Of course, a(m, n) = a(m, n). For
m or n positive, a(m, n) is equal to the sum of the horizontal and vertical
predecessors of (m, n), since the Rook arrives at (m, n) from one of the
squares to its left or below it. For example, a(2, 1) = 1 + 2 + 2 = 5. From
the table below, we see that the number of Rook paths from the lower-left
corner to the upper-right corner of the 8×8 chessboard is a(7, 7) = 470010.
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64 320 1328 4864 16428 52356 159645 470010 . . .
32 144 560 1944 6266 19149 56190 159645 . . .
16 64 232 760 2329 6802 19149 52356 . . .
8 28 94 289 838 2329 6266 16428 . . .
4 12 37 106 289 760 1944 4864 . . .
2 5 14 37 94 232 560 1328 . . .
1 2 5 12 28 64 144 320 . . .
1 1 2 4 8 16 32 64 . . .

Our recurrence formula for a(m, n) requires a variable number of pre-
ceding terms. In contrast, we also notice a recurrence relation requiring
only three preceding terms:

a(0, 0) = 1, a(0, 1) = 1, a(1, 0) = 1, a(1, 1) = 2;

a(m, n) = 2a(m− 1, n) + 2a(m, n − 1) − 3a(m− 1, n− 1), m ≥ 2 or n ≥ 2.

(Assume that a(m, n) = 0 for m or n negative.) This recurrence is easy to
prove by inclusion–exclusion but it will also follow from the forthcoming
theorem.

For ease of reading, we indicate the recurrence relation with an array
of its coefficients.
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The recurrence formula yields a rational ordinary generating function
for the doubly-infinite sequence {a(m, n)}, namely,

∑

m≥0, n≥0

a(m, n)smtn =
1 − s − t + st

1 − 2s− 2t + 3st
.



The denominator is implied by the recurrence relation. The numerator is
obtained by multiplying the denominator by the polynomial that represents
the initial values, 1 + s + t + 2st, and keeping only those monomials with
exponents of s and t both less than 2.

The generating function for 2-D Rook paths yields the following direct
computational formula, which is impractical for m and n large:

a(m, n) =

m
∑

p=0

n
∑

q=0

(

p + q

p

)(

m − 1

p − 1

)(

n − 1

q − 1

)

.

We will show a better way to calculate a(m, n) a little later.

We can generalize the Rook path problem to 3-dimensional space. How
many ways can a Rook move from (0, 0, 0) to (m, n, o), where each step is
a positive integer multiple of (1, 0, 0), (0, 1, 0), or (0, 0, 1)? The coefficients
for a linear recurrence relation are indicated below.
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The corresponding generating function is

(1 − s)(1 − t)(1 − u)

1 − 2(s + t + u) + 3(st + su + tu) − 4stu
.

To obtain the numerator, we multiply the denominator by the polynomial
representing the initial values, 1 + s + t + u + 2st + 2su + 2tu + 6stu, and
keep only those monomial terms with no variable raised to a power higher
than 1.

We could do a similar analysis of higher-dimensional Rook paths, but
the result will follow easily from the forthcoming theorem. We just note
that in any dimension the recurrence is depth one wherein each variable is
decremented by 0 or 1, and each coefficient is equal to (n+1)(−1)n , where
n is the number of variables decremented. The initial values are

a(c1, c2, . . . , cd) = j!,

where each ci equals 0 or 1, and j is the number of i such that ci = 1.



The pattern of the rational generating function for Rook paths ap-
plies to a general type of lattice path enumeration problem. Consider a
1-dimensional version with two “basic steps.” Suppose that there are two
stamp rolls, one with 1-cent stamps and the other with 2-cent stamps. Let
a(n) be the number of ways to make postage of n cents by taking strips
of stamps from the two rolls. The order of the strips and the number of
stamps per strip matter. For example, a(4) = 15 since

4 = (1) + (1) + (1) + (1) = (1 + 1) + (1) + (1) = (1) + (1 + 1) + (1)

= (1) + (1) + (1 + 1) = (1 + 1) + (1 + 1) = (1 + 1 + 1) + (1)

= (1) + (1 + 1 + 1) = (1 + 1 + 1 + 1) = (2) + (1) + (1)

= (1) + (2) + (1) = (1) + (1) + (2) = (2) + (1 + 1)

= (1 + 1) + (2) = (2) + (2) = (2 + 2).

These expressions are compositions of 4 formed with 1’s and 2’s in which
runs of like numbers are grouped arbitrarily. It’s easy to show by inclusion–
exclusion that the ordinary generating function for {a(n)} is

(1 − x1)(1 − x2)

1 − 2(x1 + x2) + 3(x1 · x2)
.

The central problem is to count lattice paths in d dimensions from
the origin to a point (p1, . . . , pd), such that each step is a positive integer
multiple of a basic step of the form ui = (ui1, . . . , uid), where 1 ≤ i ≤ k.

As an example of the method, to obtain the generating function for 2-D
Rook paths, we start with the generating function 1/(1 − x − y), which
counts sequences of length n having some number of x’s and a comple-
mentary number of y’s (the total number of x’s and y’s is n). For Rook
paths, we allow an arbitrary step length in each direction. This amounts to
replacing x by x/(1− x) and y by y/(1 − y). Hence the desired generating
function is

1

1 − (x/(1 − x)) − (y/(1 − y))
.

As another example, to obtain the generating function for 2-D Queen
paths (which we will define shortly), we start with the generating function
1/(1 − x − y − z) and replace x by x/(1 − x), y by y/(1 − y), and z by
xy/(1 − xy).

The general situation works just as in these examples. The following
theorem gives the rational generating function (which we have rewritten
using elementary symmetric polynomials).



Theorem. For d ≥ 1 and 1 ≤ i ≤ k, let ui = (ui1, . . . , uid) be a nonzero
d-tuple of nonnegative integers. Then the number of lattice paths in d
dimensions that go from (0, . . . , 0) to (p1, . . . , pd), where the pi are nonneg-
ative integers, and each step is a positive integer multiple of one of the ui,
is the coefficient of xp given by the rational generating function

∏k
i=1(1 − xui)

∑k
j=0(−1)j(j + 1)σj

,

where xα = xα1

1 . . . xαd

d and σj is the jth elementary symmetric polynomial
in the indeterminates xui .

A chess Queen can move any number of squares horizontally, vertically,
or diagonally in one step. How many ways can a Queen move from the
lower-left corner to the upper-right corner of an 8×8 chessboard, assuming
that the Queen moves up, right, or diagonally up-right at each step? A
Queen path is shown below.

Let b(m, n) be the number of Queen paths from (0, 0) to (m, n), such
that at each step the Queen moves up, right, or up-right. As with the Rook
paths, we make a table of the number of paths to each square. We calculate
each entry in the table by adding all the entries to the left of, below, and
diagonally left-below the entry, since the Queen must arrive from one of the
aforementioned squares. For example, b(2, 2) = 2 + 7 + 2 + 7 + 1 + 3 = 22.
The number of paths from one corner to the opposite corner of a chessboard
is b(7, 7) = 1499858.



...
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64 464 2392 10305 39625 140658 470233 1499858 . . .
32 208 990 3985 14430 48519 154352 470233 . . .
16 92 401 1498 5079 16098 48519 140658 . . .
8 40 158 543 1712 5079 14430 39625 . . .
4 17 60 188 543 1498 3985 10305 . . .
2 7 22 60 158 401 990 2392 . . .
1 3 7 17 40 92 208 464 . . .
1 1 2 4 8 16 32 64 . . .

For Queen paths, the basic steps are given by s, t, and st. Thus, by our
theorem, the generating function is

(1 − s)(1 − t)(1 − st)

1 − 2(s + t + st) + 3(s · t + s · st + t · st) − 4(s · t · st) .

From the denominator, we get a linear recurrence relation with constant
coefficients for the sequence {b(m, n)}.

0 −2 1
3 1 −2

−4 3 0

Written out fully, the recurrence formula for the number of Queen paths is

b(0, 0) = 1, b(0, 1) = 1, b(0, 2) = 2,

b(1, 0) = 1, b(1, 1) = 3, b(1, 2) = 7,

b(2, 0) = 2, b(2, 1) = 7, b(2, 2) = 22;

b(m, n) = 2b(m− 1, n) + 2b(m, n− 1) − b(m − 1, n− 1) − 3b(m− 2, n− 1)

− 3b(m− 1, n− 2) + 4b(m − 2, n − 2), m ≥ 2 or n ≥ 2.

(Assume that b(m, n) = 0 for m or n negative.)
In any dimension, a Queen path is at each step a positive integer mul-

tiple of a vector that consists entirely of 0’s and 1’s (but not all 0’s). The
Queen in d dimensions is similar to the Rook in 2d − 1 dimensions with
generators the power set of d variables (except the empty set). The depth
of the recurrence relation for the Queen in d dimensions is 2d−1. For ex-
ample, for 3-D Queen paths, the pattern is the same as for Rook paths in
7 dimensions with generators x, y, z, xy, xz, yz, xyz, and the depth of the
recursion is 4. As an exercise, you may wish to determine the pattern of
(constant) coefficients of the depth four linear recurrence relation for the
3-D Queen.

The (main) diagonal sequence (where all coordinates are equal) and
pure sequences (where all coordinates but one are fixed) of a multivariate



sequence with a rational generating function are D-finite, i.e., each has
a generating function which satisfies a linear equation with a finite num-
ber of derivatives and polynomial coefficients; equivalently, each satisfies
a linear homogeneous recurrence relation with polynomial coefficients.[4]
In the case of Rook and Queen paths, we can find the diagonal generating
functions, recurrence relations, and asymptotics for dimension two but we
don’t know very much for higher dimensions.

Let an = a(n, n) be the nth diagonal element of the sequence for the
2-D Rook. The sequence {an} is A051708 in the Encyclopedia of Integer
Sequences (EIS):

1, 2, 14, 106, 838, 6802, 56190, 470010, . . . .

(In the database, the first term is a(1), whereas ours is a0.) The following
generating function for this sequence was conjectured by Ralf Stephan, who
did a computer survey of many sequences, performing elementary opera-
tions and looking for matches in the database:

f(x) =
1

2

(

1 +
(1 − x)

√

(1 − x)(1 − 9x)

)

.

The method for confirming this generating function for the diagonal
sequence is to make the change of variables t = x/s (so that st = x). Then
the diagonal generating function is the coefficient of s0, because no s occurs
in it. We can find this coefficient by using partial fractions and Laurent
series (the method is explained in [9]).

Let

g(x) = 2f(x) − 1 =

√
1 − x√
1 − 9x

.

Note that f and g generate sequences satisfying the same recurrence rela-
tion but with different initial values. By logarithmic differentiation,

g′(x)(1 − x)(1 − 9x) = 4g(x),

and we can read off a recurrence formula for {an} directly:

a0 = 1, a1 = 2;

an = ((10n − 6)an−1 − (9n − 18)an−2)/n, n ≥ 2.

This recurrence relation was found by Curtis Coker [2]. It is similar to the
one for Delannoy numbers, which count King paths:

d0 = 1, d1 = 3;

dn = ((6n − 3)dn−1 − (n − 1)dn−2)/n, n ≥ 2.



Open Question 1: Is there a combinatorial proof of the recurrence formula
for the an? Paul Peart and Wen-Jin Woan found a combinatorial proof of
the recurrence formula for the Delannoy numbers [5].

How fast do the numbers an grow? To answer this question, we examine√
1 − x/

√
1 − 9x at the singularity x = 1/9. The coefficient of xn in the

expansion of (1 − 9x)−1/2 is (using Stirling’s approximating for n!)
(−1/2

n

)

(−1)n9n → 9n/
√

πn.

Using “transfer” (see, e.g., [3]), we obtain

an ∼ c 9n/(2
√

πn),

where c =
√

1 − 1/9 = 2
√

2/3.
We can also derive a recurrence relation for pure sequences (in which

one of the coordinates is constant). From the generating function

f(x, y) =
(1 − x)(1 − y)

1 − 2(x + y) + 3xy
,

we find (by induction) that

∂mf

∂xm
=

m!(−1)m+1(y − 1)2(3y − 2)m−1

(1 − 2(x + y) + 3xy)m+1
,

and hence the mth coefficient of the generating function for the pure se-
quence, call it am, is given by

am =
1

m!

∂mf

∂xm

∣

∣

∣

∣

x=0

=
(y − 1)2(3y − 2)m−1

(2y − 1)m+1
.

Define f(y) to be the function on the right. Then

f ′(y) =
(y − 1)(−3 + n(y − 1) + 5y)

(6y2 − 7y + 2)2
(3y − 2)m

(2y − 1)m
.

It follows that

f ′(y)(6y3 − 13y2 + 9y − 2) = f(y)(−3 − m + 5y + my),

and we can read off a pure recurrence relation:

0 =a(m, n)(2n)

+ a(m, n − 1)(−m − 9n + 6)

+ a(m, n − 2)(m + 13n − 21)

+ a(m, n − 3)(−6n + 18), m ≥ 0, n ≥ 1.



Since we know the initial values a(m, 0) = 2m−1, we can compute a(m, n)
in min(m, n) steps, retaining only three values of the sequence in memory
at any time.

For 3-D Rook paths, we conjecture (from computer calculations) that
the diagonal sequence satisfies the recurrence relation

a0 = 1, a1 = 6, a2 = 222, a3 = 9918;

an = ((121n3 − 212n2 + 85n + 6)an−1

+ (475n3 − 3462n2 + 7853n − 5658)an−2

+ (−1746n3 + 14580n2 − 40662n + 37908)an−3

+ (1152n3 − 12672n2 + 46080n− 55296)an−4)/(2n3 − 2n2), n ≥ 4.

Open Question 2: What is the linear recurrence relation with polynomial
coefficients for the Rook paths diagonal sequence for dimension greater than
2? Can we at least say what its order and degree of polynomial coefficients
are?

For the 2-D Queen, the diagonal sequence {bn = b(n, n)} is the EIS
sequence A132595:

1, 3, 22, 188, 1712, 16098, 154352, 1499858, 14717692, 145509218, . . . .

Let x = st. Then the generating function becomes

f(x) =
(x − 1)(s2 − (−x − 1)s + x)

(3x − 2)s2 + (−4x2 + x + 1)s + (3x2 − 2x)
.

Using partial fractions and Laurent series, we obtain

f(x) =
(x − 1)

(3x − 2)

[

1 +
1 − x√

1 − 12x + 16x2

]

.

Solving for 1/
√

1 − 12x + 16x2 and taking a derivative yields

f(x)(46x2−47x+11)+f ′(x)(48x4−116x3+95x2−29x+2) = 10x2−15x+5,

and we can read off the recurrence formula:

b0 = 1, b1 = 3, b2 = 22, b3 = 188;

bn = ((29n − 18)bn−1 + (−95n + 143)bn−2

+ (116n− 302)bn−3 + (−48n + 192)bn−4)/(2n), n ≥ 4.



By “transfer,” we have

bn ∼ c(1/r1)
n/

√
πn,

where c =
√

10(3
√

5 − 5)/8.

Open Question 3: What is the pure linear recurrence relation with polyno-
mial coefficients for 2-D Queen paths?

Open Question 4: What is the linear recurrence relation with polynomial
coefficients for the Queen paths diagonal sequence for dimension greater
than 2?

To compute the asymptotics of the main diagonal sequence for Rook
paths, we apply a special case of a theorem from Robin Pemantle and Mark
C. Wilson [6]. Let x ∈ Cd and n ∈ Zd. Suppose that

F (x) =
∑

anx
n =

I(x)

J(x)
,

where J is holomorphic on an open domain D containing the closure of the
domain of convergence of F . A critical point of F for the main diagonal
vector is a solution of

J(x) = 0

xi∂jJ(x) = xd∂dJ(x).

A contributing point of F is a critical point that influences the asymptotics
of the main diagonal sequence.

The following proposition, observed by Alexander Raichev and Mark C.
Wilson [7], is a consequence of the Pemantle and Wilson Theorem result.

Proposition. Suppose that J(x) is symmetric in x and ∂dJ(c) 6= 0, where
c = (c, . . . , c) is the unique contribution point in the positive orthant (R+)d.
Then

a(n, . . . , n) ∼ c−ndbn(1−d)/2,

with

b =
I(c)

−c∂dJ(c)
√

(2π)d−1dad−1
,

where
a = 1 +

c

∂dJ
(∂2

dJ − ∂1∂dJ)|x=c.



We now apply the proposition to our d-dimensional Rook paths with

∑

a(n1, . . . , nd)x
n1

1 · · ·xnd

d =

∏d
i=1(1 − xi)

∏d
i=1(1 − xi) −

∑d
i=1 xi

∏

j 6=i(1 − xi)
.

The equation J(c, . . . , c) = 0 gives

(1 − c)d − dc(1 − c)d−1 = 0.

Thus c = 1/(d + 1) or c = 1. Since (1, . . . , 1) is not a convergence point
of the power series, the unique contribution point in the positive orthant
(R+)d is

(

1

d + 1
, . . . ,

1

d + 1

)

.

The formula in the proposition gives an asymptotic formula for the number
of Rook paths from the origin to a diagonal point:

a(n, . . . , n) ∼ (d + 1)dn−1d(d+2)/2(2πn(d + 2))(1−d)/2.

Rook paths are equivalent to Nim games while Queen paths are equiv-
alent to Wythoff’s Nim games. Recall that in Nim, the players alternately
remove any number of stones from one of a number of piles. The game ends
when the last stone is removed. In Wythoff’s Nim, the players in each turn
remove the same number of stones from any of the piles. The following
observations are not new (at least in the case of Wythoff’s Nim; see, e.g.,
[1]):

• Rook paths from (0, 0, . . . , 0) to (a1, a2, . . . , ad) are equivalent to Nim
games that start with d piles of stones of sizes a1, a2, . . . , ad.

• Queen paths from (0, 0, . . . , 0) to (a1, a2, . . . , ad) are equivalent to
Wythoff’s Nim games that start with d piles of stones of sizes a1, a2,
. . . , ad.

According to our analysis, we can say that the number of Nim games
that start with two piles of n stones satisfies a linear recurrence relation of
order two with linear polynomial coefficients. Empirically, the number of
Nim games that start with three piles of n stones satisfies a linear recurrence
relation of order four with polynomial coefficients of degree 3. The number
of Nim games that start with d piles of n stones is given by the asymptotic
formula above. The number of Wythoff’s Nim games that start with two
piles of n stones satisfies a linear recurrence relation of order four with
linear polynomial coefficients. There is no consideration of strategy in
these results; we are counting all possible games.



Obtaining an asymptotic formula for the number of Queen paths from
the origin to a diagonal point via the same type of analysis appears to be
quite challenging, since finding the critical point in the positive orthant
requires solving the equation

1 −
(

d

1

)

x

1 − x
−
(

d

2

)

x2

1 − x2
− · · · −

(

d

d

)

xd

1 − xd
= 0,

and no straightforward solution is apparent.

Open Question 5: For Queen paths in d dimensions, what is the growth
rate of the diagonal sequence?
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