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Aliasing 

 

Digital spectrum analyzers work differently than analog spectrum analyzers.  If you place an 

analog sinusoid at the input to an analog spectrum analyzer and if the frequency range displayed 

by the analyzer does not include the frequency of the analog input, you will not see any 

indication of the sinusoid in the display.  This is not the case with a digital spectrum analyzer. 

The spectrum mode of the PicoScope is a digital spectrum analyzer.  An analog input signal is 

sampled (digitized) before the PicoScope begins processing this signal to determine its frequency 

content.  If the input frequency is greater than the highest frequency in the display frequency 

range, the PicoScope (spectrum mode) will still show the signal, albeit at a frequency other than 

the true frequency.  This phenomenon is known as aliasing.  One can say that the input frequency 

accepts a new identity (alias) when it shows up on the display as a different frequency. 

Consider an analog sinusoid, representing perhaps a carrier in a radio communications system, 

cos⁡(2𝜋𝑓𝑐𝑡) 

The signal frequency is 𝑓𝑐.  If this analog signal is sampled with a sampling frequency 𝑓𝑠, the 

time of the n-th sample is 

𝑡 = 𝑛𝑇𝑠 

where the sampling period 𝑇𝑠 (the time between adjacent samples) is the reciprocal of the 

sampling frequency, 

𝑇𝑠 =
1

𝑓𝑠
 

and where n is an integer (index).  The digital signal processor (DSP) will therefore see 

cos⁡(2𝜋𝑓𝑐𝑇𝑠𝑛) 

Figure 1 illustrates sampling of an analog sinusoid.  In the case shown, 𝑓𝑠 = 4𝑓𝑐, so that there are 

four samples for each cycle of the analog sinusoid. 

Now consider the case where a different analog sinusoid is sampled.  In this case, the signal 

frequency is 

𝑓𝑐 + 𝑘𝑓𝑠 

where k is an integer (any integer, positive or negative) and where 𝑓𝑠 is the same sampling 

frequency as before.  (For example, when 𝑘 = −1 the new signal frequency is less than the  
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Figure 1: Sampling an analog sinusoid 

 

original signal frequency by an amount equal to the sampling frequency.)  The DSP will see 

cos[2𝜋(𝑓𝑐 + 𝑘𝑓𝑠)𝑇𝑠𝑛]⁡ 

Since 𝑓𝑠𝑇𝑠 = 1, this expression can be written as 

 cos[2𝜋(𝑓𝑐 + 𝑘𝑓𝑠)𝑇𝑠𝑛] = cos[2𝜋𝑓𝑐𝑇𝑠𝑛+2𝜋𝑘𝑓𝑠𝑇𝑠𝑛]⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡  

 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= cos[2𝜋𝑓𝑐𝑇𝑠𝑛 + 2𝜋𝑘𝑛]  

 ⁡⁡⁡⁡⁡= cos(2𝜋𝑓𝑐𝑇𝑠𝑛)  

The last step in the above mathematical development requires some explanation.  If you add or 

subtract 2𝜋 radians to the argument of a cosine, you don’t change the value of the cosine.  Above 

we subtracted 2𝜋 radians 𝑘𝑛 times.  (Note that 𝑘𝑛 is an integer since it is the product of two 

integers.) 

The above equation tells us that if we sample a signal frequency 𝑓𝑐 + 𝑘𝑓𝑠 (where 𝑘 is any 

integer) with sampling frequency 𝑓𝑠 the data passed to the DSP are identical to the data produced 

by sampling the signal frequency 𝑓𝑐.  In other words, the DSP won’t be able to tell the difference 

between an input analog frequency of 𝑓𝑐 and an input analog frequency of 𝑓𝑐 + 𝑘𝑓𝑠, where 𝑘 is 

any integer.  Therefore, all of the signal frequencies 𝑓𝑐 + 𝑘𝑓𝑠 (including 𝑓𝑐, corresponding to  

𝑘 = 0) will show up at the same display frequency on a digital spectrum analyzer, such as the 

PicoScope in spectrum mode. 

Figure 2 shows an example of aliasing.  In this case, 𝑓𝑠 =
4

5
𝑓𝑐, so that there are 4 samples in 

every 5 cycles of the analog sinusoid (the solid curve in Figure 2).  There are 5 cycles and 5 

samples shown in Figure 2, but the last sample must be associated with the next set of 5 cycles, 

so there are only 4 samples associated with each set of 5 cycles.  The relationship can also be 

written 𝑓𝑐 =
5

4
𝑓𝑠, which indicates that the analog sinusoid advances by one-and-one-quarter 
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cycles from one sample to the next.  There is a second sinusoid shown in Figure 2; it corresponds 

to the frequency 𝑓𝑐 − 𝑓𝑠.  Since 𝑓𝑠 =
4

5
𝑓𝑐 in this example, this second frequency equals 

1

5
𝑓𝑐; this 

second frequency can also be written as 
1

4
𝑓𝑠.  Notice how the data (the sampled points) lie on 

both sinusoids, so that a DSP given these data would have no way of knowing that it was an 

analog frequency of 
5

4
𝑓𝑠 rather than an analog frequency of 

1

4
𝑓𝑠 that provided these data. 

 

 

Figure 2: Illustration of aliasing 

 

Another way of viewing aliasing is by means of this expression: 

cos(2𝜋𝑓𝑐𝑡) = Re{𝑒𝑗2𝜋𝑓𝑐𝑡} 

where Re{∙} denotes the real part of a complex value. 

Figure 3 shows the complex plane (the Argand diagram).  The horizontal axis represents the real 

part of a complex number, and the vertical axis the imaginary part.  The complex exponential on 

the right-hand side of the above equation moves in a circle in a counter-clockwise direction with 

a uniform angular velocity.  To sample the cosine is equivalent to sampling the complex 

exponential and then taking the real part of the sample.  It is easy to see from the geometry of the 

circle that if we sample the complex exponential once for each one-and-one-quarter revolutions 

of the complex point, then we get exactly the same sample values as if we were sampling only 

once every one-quarter revolution of the complex point. 
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Figure 3: Complex exponential 

 

The display range of a digital spectrum analyzer is always chosen to be 0 to 𝑓𝑠 2⁄ .  If the analog 

signal frequency 𝑓𝑐 at the input of the spectrum analyzer already lies within the display range (0 

to 𝑓𝑠 2⁄ ), then we say there is no aliasing.  On the other hand, if 𝑓𝑐 is larger than 𝑓𝑠 2⁄ , there will 

be an alias frequency 𝑓alias in the range 

0 ≤ 𝑓alias ≤ 𝑓𝑠 2⁄  

and that is the frequency that will display on the digital spectrum analyzer.  Two different but 

equivalent procedures for calculating 𝑓alias are described below. 

Method 1 for Finding 𝒇𝐚𝐥𝐢𝐚𝐬  

We assume 𝑓𝑐 > 𝑓𝑠 2⁄ .  Otherwise, there is no need to calculate an alias frequency.  Calculate the 

difference 𝑓𝑥 = 𝑓𝑐 − 𝑓𝑠.  If 𝑓𝑥 is larger than 𝑓𝑠 2⁄ , then keep subtracting 𝑓𝑠 from 𝑓𝑐 until a 

frequency 𝑓𝑥 is reached that is less than 𝑓𝑠 2⁄ .  If 𝑓𝑥 is between 0 and 𝑓𝑠 2⁄ , then 𝑓alias = 𝑓𝑥.  If 𝑓𝑥 

is between −𝑓𝑠 2⁄  and 0, then 𝑓alias = −𝑓𝑥.  In this way, 𝑓alias is always positive and less than 

𝑓𝑠 2⁄ . 

Consider the example of a 100 kHz carrier frequency that will be viewed with the PicoScope 

(spectrum mode).  Suppose the display range of 195 kHz is selected on the PicoScope.  This is 

𝑓𝑠 2⁄ , so the sampling frequency is 390 kHz.  The 100 kHz lies already within the display range, 

so there is no aliasing in this case. 

Now suppose we change the display range to 98 kHz.  The sampling frequency now 

automatically changes to 196 kHz.  The 100 kHz of our carrier is outside the display range, so 

we know that we will see an alias.  If we subtract 196 kHz (𝑓𝑠) from 100 kHz, we will get       

−96 kHz.  Corresponding to this negative frequency is a positive frequency 96 kHz.  This is the 

alias frequency.  Our carrier will show up on the PicoScope with the correct signal level but at 

the alias frequency 96 kHz. 
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Finally, we consider what happens if we change the display range to 49 kHz.  Of course, there 

will be an alias in this case as well.  Will it be the same alias frequency?  No!  The sampling 

frequency changes automatically to 98 kHz when we select a display range of 49 kHz.  If we 

subtract 98 kHz (𝑓𝑠) from 100 kHz, we will get 2 kHz.  This is the new alias frequency. 

Let us summarize the above example. We send a 100-kHz analog sinusoid to the PicoScope.  

When the display range is 195 kHz, the display shows it at 100 kHz.  If we switch the display 

range to 98 kHz, the signal suddenly “moves” to 96 kHz.  If we then switch the display range to 

49 kHz, the signal “moves” again, this time to 2 kHz.  The displayed signal level, in decibels, is 

the same (and correct) for all settings of the display range. 

The rationale for this method is as follows.  The frequencies 𝑓𝑐 + 𝑘𝑓𝑠 (for 𝑘 any integer, positive 

or negative) are evenly spaced along the frequency axis −∞ < 𝑓 < ∞, each frequency distant by 

𝑓𝑠 from its nearest neighbor on either side.  Every frequency in this set will result in the same set 

of samples when using the sampling frequency 𝑓𝑠.  From this set of frequencies (𝑓𝑐 + 𝑘𝑓𝑠) there 

will always be one and only one frequency 𝑓𝑥 = 𝑓𝑐 + 𝑘𝑥𝑓𝑠 (where 𝑘𝑥 is a negative integer) that 

lies within the range 

−𝑓𝑠 2⁄ ≤ 𝑓𝑥 ≤ 𝑓𝑠 2⁄  

𝑓𝑥 can be either positive or negative, but 𝑓alias is defined to be positive. So 𝑓alias = |𝑓𝑥|. 

The justification for saying 𝑓alias = |𝑓𝑥| comes from Euler’s identities, 

cos(2𝜋𝑓𝑡) =
1

2
𝑒𝑗2𝜋𝑓𝑡 +

1

2
𝑒−𝑗2𝜋𝑓𝑡 

sin(2𝜋𝑓𝑡) =
1

2𝑗
𝑒𝑗2𝜋𝑓𝑡 −

1

2𝑗
𝑒−𝑗2𝜋𝑓𝑡 

That is to say, every real sinusoid always consists of a negative-and-positive frequency pair. 

Method 2 for Finding 𝒇𝐚𝐥𝐢𝐚𝐬  

In this second method for calculating 𝑓alias we will think in terms of the displayed frequency 

range 

𝑓𝑅 = 𝑓𝑠 2⁄  

 

for a digital spectrum analyzer.   We assume 𝑓𝑐 > 𝑓𝑅.  Otherwise, there is no need to calculate an 

alias frequency. 

 

Consider first the case where 𝑓𝑅 < 𝑓𝑐 < 2𝑓𝑅.  Image a point at DC (𝑓 = 0) on the frequency axis.  

If we were using an analog spectrum analyzer, we would envision the point moving 𝑓𝑐 Hz to the 
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right before stopping to mark the location of the analog frequency.  However, with a digital 

spectrum analyzer, employing a sampled signal, we can move the point from the origin only  

𝑓𝑅 Hz to the right.  In order to complete the required travel of 𝑓𝑐 Hz, we imagine the point 

“bouncing off the wall” at 𝑓𝑅 Hz and then moving back to the left by an additional 

 

∆𝑓 = 𝑓𝑐 − 𝑓𝑅⁡⁡⁡⁡Hz 

 

The total travel is therefore 𝑓𝑅 + ∆𝑓 = 𝑓𝑐 Hz, as required, and the point comes to rest at 𝑓𝑅 − ∆𝑓.  

In other words, 

 

 𝑓alias = 𝑓𝑅 − ∆𝑓, 𝑓𝑅 < 𝑓𝑐 < 2𝑓𝑅 
 

 

 
 

This can also be written as 𝑓alias = 𝑓𝑠 − 𝑓𝑐, which is the same result as given by Method 1 for the 

case 𝑓𝑠 2⁄ < 𝑓𝑐 < 𝑓𝑠. 

 

This method can be applied also when 𝑓𝑐 > 2𝑓𝑅 , but more than one bounce is then required.  For 

example, if 𝑓𝑐 is a little larger than 2𝑓𝑅, we envision moving the point from DC to the right, 

where is bounces off the wall at 𝑓𝑅 Hz, then to the left, where it bounces off the wall at 0 Hz, and 

then to the right again, reaching its final resting place a little to the right of 0 Hz.  So the alias is 

𝑓alias when 𝑓𝑐 = 2𝑓𝑅 + 𝑓alias (where 0 < 𝑓alias < 𝑓𝑅).  With this method, you can use as many 

bounces as necessary to achieve the total travel of 𝑓𝑐 Hz. 

 

Another way of thinking about this aliasing is to say that the frequency axis folds at 𝑓𝑅, so that 

the analog frequency 𝑓𝑅 + ∆𝑓 appears at 𝑓𝑅 − ∆𝑓. 

 

We now use this second method for the example considered earlier.  𝑓𝑐 = 100 kHz and, initially, 

𝑓𝑅 = 98 kHz.  We envision a point on the frequency axis that leaves DC and moves 98 kHz to 

the right, where it bounces off the wall at 98 kHz and then moves back to the left by 2 kHz, for a 

total travel of 100 kHz.  The final resting place is 𝑓alias = 96 kHz. 

Now we consider 𝑓𝑐 = 100 kHz and 𝑓𝑅 = 49 kHz.  In this case, we envision a point on the 

frequency axis that leaves DC and moves to the right, bouncing off the wall at 49 kHz, then 

0 𝑓𝑅 𝑓𝑅 + ∆𝑓𝑓𝑅 − ∆𝑓
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moves to the left and bounces off the wall at 0 Hz.  The total travel is 100 kHz, and the final 

resting place is 𝑓alias = 2 kHz. 

Some people consider this second method more intuitive and simpler than the first.  However, if 

the number of bounces gets large, the second method becomes awkward.  So the first method is 

generally preferred when 𝑓𝑐 is much larger than 𝑓𝑅. 

 

The rationale for this method is as follows.  Suppose that the analog frequency equals 𝑓𝑅 + ∆𝑓, 

where 0 < ∆𝑓 < 𝑓𝑅.  The real sinusoid with this frequency has a Fourier transform with two 

Dirac delta functions: one at 𝑓𝑅 + ∆𝑓 and one at −(𝑓𝑅 + ∆𝑓).  The second of these Dirac delta 

functions aliases to 2𝑓𝑅 − (𝑓𝑅 + ∆𝑓) = 𝑓𝑅 − ∆𝑓. 

 

 

 


