Simple Program Design

"Chapter 9: Further modularisation, cohesion and coupling"

Chapter Outline

Further modularisation, cohesion and coupling

Steps in Modularisation
Module cohesion
Module coupling

Steps in Modularisation

1. Define the problem.
2. Group the activities into subtasks or functions.
3. Constract a hierarachy chart.
4. Establish the logic of the mainline of the algorithm.
5. Develop each successive module.
6. Desk check the solution.

Example 9.1 Calculate vehicle registration costs

A program is required to calculate and print the registration cost of a new vehicle that a customer has ordered. The input details required are:

Owner's name
Vehicle make
Vehicle model
Weight (in kg)
Body type (sedan or wagon)
Private or business code ('P' or 'B')
Wholesale price of vehicle

The vehicle registration cost is calculated as the sum of the following charges:

[image: image1.jpg]Registration fee
Taxlevy

Weight tax

Insurance premium

82700
PRIVATE
BUSINESS
PRIVATE
BUSINESS

PRIVATE
BUSINESS

5% of wholesale price
7% of wholesale price
1% of weight (converted to)
3% of welght (converted (0 §)
1% of wholesale price.
2% of wholesale price

The output on the screen is as follows:

Vehicle make:
Vehicle model:
Body type:
Registration fee:
Tax levy:
Weight tax:
Insurance premium:
Total registration charges:
Federal tax:
Total amount payable:

A Define the problem

Here is the IPO chart for the Vehicle Registration problem..

[image: image2.jpg]Inpot Processing Output
owners_name. Get input details. vehicl_make
vehide_moke | Colclote ax_levy vehide_model
vohide_model | Colcwloe weight_tx body_type
weight Calclate insuronce_premivm | registrotion_fee
body_type | Cokulte tola_registration_osts | tax_lovy
wsoge_code | Colwlte fodorol_tox woight_tax
wholesae_prco | Calclte total_amoun_payable | Insurance_promium

Dislay detlls foscrvon totol_registaton_chorges
fodorol_tox
totol_omount_payable

B Group the activities into modules

The activities in the processing component can be grouped into three main functions, as follows:

1. Get input details.
2. Display details to screen.
3. Calculate the total amount payable.

C Construct a hierarchy chart

Here is a Structure Chart for the problem.

[image: image3.jpg]Calcwlate

Ger_vehide.
details

Doy
"
details

D Establish the logic of the mainline of the algorithm using pseudocode

The mainline requires a DOWHILE loop and calls to the modules as required.

[image: image4.jpg]Caliote_egistoton_costs
Rood owners_name
'DOWHILE awners_nome NOT = X0X)"
Got_vehica_dotis (vaico dools)
Colcvlote_tool_omourt_payabe (ragistation dtas, totol_omount_payabie)
Disply_rgistrion_detas (vehid detols, regishation detis,
‘otol_amount_poyaie)
Road owners_ome
ENODO
[

E Develop the pseudocode for each successive module in the hierarchy chart.

Here is the get vehicle details module.

[image: image5.jpg]Gt _volicl_detal (vehicle detols)
Gotvaice_moke
Got votide_model
Got woight
Got body_type
Gotusoge_code
Got wholesle_pice

N

Here is the calculate total amount due module.

[image: image6.jpg]Colalate_total_amount_payable (rgishotion detls, otol_omount_payoble)
Colcloe_fodorol_ox (vehice deois, federol_ux)
Cokulote_ttal_ragstrtion (vaice deos, regisaton deols)
total_omount_poyoble = federol_tox+ fo_registon_chorges

B

Here is the calculate federal tax module

[image: image7.jpg]Colote_foderol_tox (vaice deols,foderol_tox)
Set tax_unifs =610

fodorol_tox = (ox_unis + 1) * 5200
oo

Here is the calculate total registration module.

[image: image8.jpg]Colote_torol_yogsrton (vehil detos, ragsaton dotos)
rogistotion_fee = 577,00
Fusogo_oda = THEN
Tox_lowy = whoesda_pce * 0,05
woiht_tox = weight * 0.01
Insuonce_promum = wholesce_prco * 0.01
HSE
tox_vy = wholesde_eice * 0.07
woght_tox = waight ~ 0.03
irsuronca_promium = wholscl_pice * 0.02
ENOIF
otol_agistoion_chorges = registotion_fo + tox_lavy +
woiht_tax + insuonca_promm
i0)

Finally, here is the Display registration details module.

[image: image9.jpg]Display_segistoton_detls (vehics deols, rogshation daois, fofol_amount_payoble)
vehil,

)

F Desk check the solution algorithm

Here is the test input data.

[image: image10.jpg]Record | weight | usago code | wholesale_price
1 1000 [30000
2 2000] 20000

XXX

Here are the expected results.

[image: image11.jpg]Rogistation foe

Tox levy

Waight tox

Insurance premium

Totol registration charges
Foderal fox

Totol amount payable

Here is the condensed desk check table.

[image: image12.jpg]Calwlate

DOWHILE
)

XXX

30000

20000

38

400

1837

1887

237

2287

Module Cohesion

A module performs a single function, has a single entry and a single exit. Cohesion is a measure of how well the code of a module fits together in doing a single function! Here is a chart of different types of cohesion.

[image: image13.jpg]Cohesion level

Cohesion attribute | Resultant module
strength

Coinddontol
Logicol
Tomporol
Procedural
Communicationol
Saquaniiol
Funcional

Low Cohesion Woakest

High Cohesion Stongest

Coincidental cohesion

The weakest form of cohesion a module can have is coincidental cohesion. It elements have no meaningful relationship. It might occur on older systems because a module couldn't have more then 50 program statements! Here is an example of a coincidental cohesion module.

[image: image14.jpg]Flo_procossing

N

Open omploes udotes il
R amyloye rcord
Pint_poge_heodings

Open onployeo st fl
ot poge_caun o one

Sot oro Tl o oo

Logical cohesion

Logical cohesion occurs when the elements of a module are grouped together according to a certain class of activity. Here is an example of logical cohesion in the module read all files.

[image: image15.jpg]Read_oll_fles (o_code)
SE of fie_code
1= Rood asfomer fonsaction ecord
IF not EOF
ncromant cusfomer_ronsacion_count
ENDIF
22 Rood cstomer mstet recod
IF not EOF
cromant customer_master_count
ENDIF
31 Rood product moser recrd
F not EOF
incrment product_mastr_count
ENDIF
ENDCASE
END

Temporal cohesion

Temporal cohesion occurs when the elements of a module are grouped together because they are related by time. Initialization and finalization module are examples of this.

[image: image16.jpg]Inialsation
Open tonsoction fl
Issun prompt Eate todays dote — DOMMYY'
Read iodays_dote
Set ronsoction_count 0 7610
Reod nonsacton record
IF not EOF

ncroment nonsacton_count

ENDIF
Open roport il
Pint_poge_headings
Set opor_fool 0 2610

D

Procedural cohesion

Procedural cohesion occurs when the elements of a module are related because they operate according to a particular procedure, or sequence of execution. The following read student records and total student ages is such a module. The "and" in its name tells that it doesn more than one function!

[image: image17.jpg]Rood_stdent_ocords_ond_totl_sudont_oges.
Sof nmber_of_ecords 0 zet0
Sotfotol_ogo 10 2610
Reod siodent record
DOWHILE mor rcords eist

2dd oge o otol_oge
Add 1o pumbor_of_recots
Read stdent record
ENDDO
Pt umbes_of_secors, oko_oge
wo

Communicational cohesion

Communicational cohesion occurs when the elements of a module are grouped together because they all operate on the same (central) piece of data. Here is an example in the validate product record module.

[image: image18.jpg]‘Volidote_product_record
IF arsocton_type NOT =0 THEN
enor_fog = o
wtor_nessags = “avol Hasacton e’
Piint_eror_eport
E0F
IF customer_number s NOT e THEN
anor_fog = oo
aror_message = vl cutomer umbor
Pt _to_ioport
[
1F oo = blorks
O podoc_no s esing Barks THEN
anor_fog = oo
enor_messoge = evold prodct 10”
Pint_ro_ioport
[
0

Sequential cohesion

Sequential cohesion occurs when a module contains elements that depend on the processing of previous elements. The following process purchase has sequential cohesion.

[image: image19.jpg]Proces_purchasas
Set tool_purchases 1o 710
ot umber_of_puchuses
00 log_index = 1 10 umbor_of_pchases
ot puchase
o purchosa 10 tool_purchses
ENDDO
sales_tox = fotol_puchases * sales_tox_percant
amount_dos = otol_purchoses + sles_tox
o

Functional cohesion

Functional cohesion occurs when all the elements of a module contribute to the performance of a single specific task. The following calculate sales tax module has functional cohesion.

[image: image20.jpg]Calaukte _sales_tox
F product s sles ax exenpt THEN
solos_tux = 0
[
F poduc_pica < 550,00 THEN
sales_tox = product_peice * 0.25
st
IF product_prcos $100.00 THEN
solos,_tox = product_peica * 0.35

Sls_ox = prodt_pie * 05
o0l
ol
[
o

Summary of cohesion levels

When designing modules, try to form modules that have a single problem-related function. If functional cohesion is achieved, the modules will be more independent, easier to read and understand, and more maintainable than modules with lesser cohesion.

Module Coupling

When designing a program, look not only at the cohesion of modules but also at the flow of information between modules. The connections between modules are called interfaces or couples. Tight coupling implies large dependence on the struture of one module by another. Losse coupling makes for more independent and easier to maintain modules. Here is Yourdon and Constantine's coupling scale.

[image: image21.jpg]Coupling level Coupling attribute \ Resultant module.

. design quality
Common Tight couping poorest
Extormal
Control
Stamp

Data Loose coupling best

Common coupling

Common coupling occurs when modules reference the same global data structure. A data structure is a collection of variables.

[image: image22.jpg]global data structure.

e

The following pseudocode example shows two modules that experience common coupling because they both access the customer record.

[image: image23.jpg]Rood_astomer_econd
Raod customer focord
IF EOF THEN
sotEOF_fog 1o e
ENOIF
o

Voldate_customer_ecord
F cstomes_number is NOT mumerkc THEN
eror_messoge ‘ivaid cstomer number”
Print_srror_report
[

o

External coupling

External coupling occurs when two or more modules access the same global data variable.

[image: image24.jpg]‘global data varioble:

bt

Module A Module B

The following shows that two modules both access the sale_tax data item.

[image: image25.jpg]A Colelote_soles_tox
IF roduct s sl axempt THEN
slos_tox =0
[it3
TF product_pie < $50.00 THEN
solos_tox = prout_prics * 0.25

ooF
o0

B Cocuote_omount_duo

omount_due = orol_amaunt + soles_tox
[

Control coupling

Control coupling occurs when a module passes another module a control variable that is iintended to control the other module's logic.

[image: image26.jpg]flog

Module A

Here is one module passing another a control parameter.

[image: image27.jpg]Process_nput_code
Reod input_code
Choosa_opopicte_octon (input_cods)

Choose_opproprioe_ocion (nput_code)
CASE OF it _codo
1: Read employae record
2: Pin._poge_heodings
3. Opan employoe master fl
4.:Set poge_count 0 zer0
5 : aror_mesioge = Employos numbe not numerc
ENDCASE
[

Stamp coupling

Stamp coupling occurs when one module passes a non-global data structure to another module.

[image: image28.jpg]data structure

Module 8

Here, one modules passes another the current_record data structure.

[image: image29.jpg]A

Process_onsaction_record

T tramsocton rcord i for o moe THEN
Process_male_studont (curon_record)
s
Proces_fomale_studant (curent_ecord)
ENOIF

[image: image30.jpg]Proces_male_student (curont_secord)
ncroment mola._stodent_count
IF sdent_oga > 21 THEN
nctoment matre_ole_count
ENDIF

)

Data coupling

Data coupling occurs when a module passes a non-global data variable to another module.

[image: image31.jpg]olementary.
dota tem

Module A

Here the total_price and sales_tax varaibles are passed to another module.

[image: image32.jpg]Process_customer_rocord

Cor_sols_ox (oo_pr,sls_in)
i

Colclote_solos_tax (orl_price, soles._tox)
IF 1o_prco < $10.00 THEN
sols_tox = totol_pice * 0.25
ase
IF orol_pica < $100.00 THEN
soos_tox = fotol_pica * 0.3
ESE
soos_tox = lool_pica * 0.4
ENDIF
0P
o

A summary of coupling levels

You should aim towards module independence and a minimum of information interchange between modules. 1. Pass data to a subordinate module in the form of parameters. 2. Write each subordinate modules as a self-contained unit that can accept data as parameters and not modify global data.

