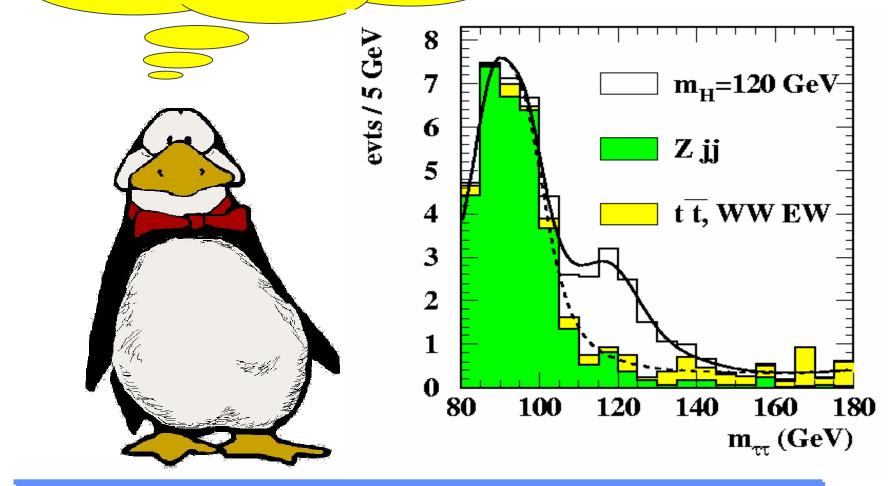

Significance Calculation/A New Method in Searching for New Physics & $H \rightarrow \gamma\gamma$ Yongsheng Gao Southern Methodist University

North America SM/Higgs Workshop April 28, 2006 at Argonne National Lab



Challenges from first LHC Data

Statistical fluctuation or first sign of New Physics?

Southern Methodist Univ.

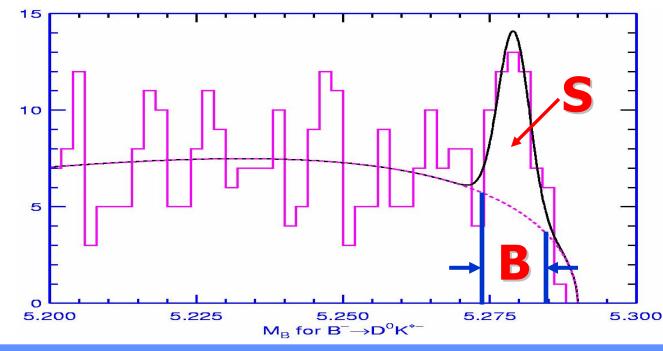
- Review/problem of current LHC search methods & significance calculation
- General procedures for searching new physics with an <u>unknown location or shape</u>
- A New Method vs Sliding Window
- Results and Conclusion
- Significance of $H \rightarrow \gamma \gamma$ (ATL-COM-PHYS-
 - 2006-009 by I. Koletsou, G. Unal, etc)
- **Photon Conversion & H \rightarrow \gamma \gamma (David Joffe)**

Strategy: Search for excess of events in a certain region of a kinematic observable

Observation Probability: P(n,B) = e^{-B} Bⁿ/n! ■ Gaussian Statistics if B is large (B > 25)

• Observation significance: S/\sqrt{B} where S=n-B

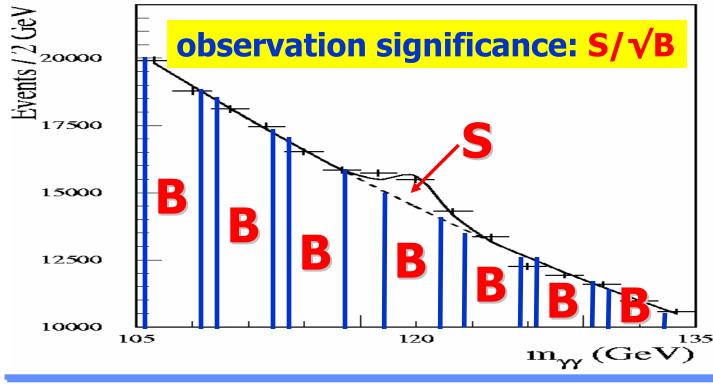
HEP definition of observation significance:


Definition	1σ	2σ	3σ	4σ	5σ
Observation due to	15 87%	2.28%	0.14%	0.0032%	2.9x10 -7
BKG fluctuation	15.87%				

Southern Methodist Univ.

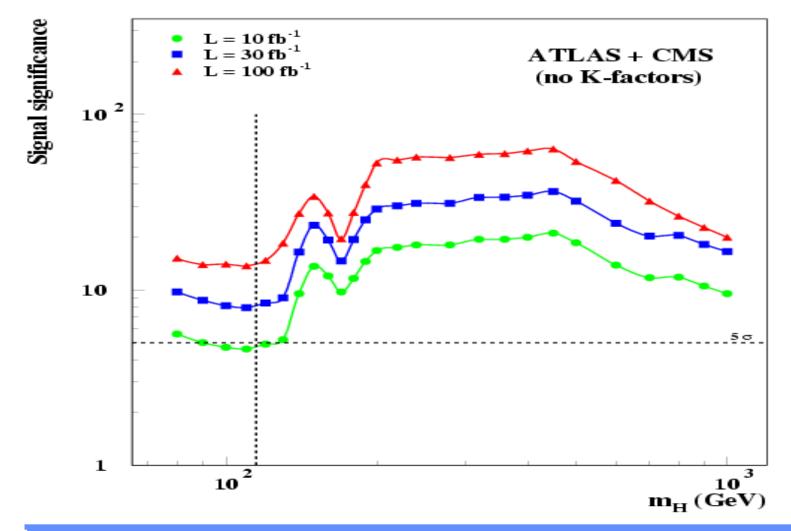
To maximize observation significance S/\sqrt{B} :

- Search region: $\pm 2\sigma$ around known Gaussian mean
- Exclude where signal has little chance to show up
- Only valid when BOTH shape/location are known



Southern Methodist Univ.

- New Particle's Mass: <u>Unknown! Range: TeV</u>
- Use <u>"Sliding-Window</u>" and search for excesses
- Significance: Calculated for <u>each</u> sliding window


Southern Methodist Univ.

Yongsheng Gao

Each significance (S/\sqrt{B}) based on a $\sim 2\sigma$ window

Southern Methodist Univ.

- Explore kinematic region from 0 to 100
- Background: Flat distribution from 0 to 100
- Possible Gaussian Signal: Stand. Deriv. σ = 1
 Unknown mean from 2 to 98
- "Sliding-Window": Width=4 and move center from
 2 to 98 with step size of 16,8,4,2,1,0.5,0.2,0.1
- MC experiment: 500 <u>background-only</u> events
- Check how often we find <u>"significant</u> (S/√B) signals from any <u>background-only</u> MC exp.

Based on 13,400,000 MC experiments

Each experiment contains 500 **<u>background-only</u>** evts

Step-Size	S/√B>1	S/√B>2	S/√B>3	S/√B>4	S/√B>5
16	70.89%	20.42%	1.52%	0.11%	0.002%
8	91.56%	35.25%	2.82%	0.20%	0.003%
4	99.72 %	58.53%	5.38%	0.39%	0.007%
2	99.99 %	77.86%	9.64%	0.73%	0.015%
1	100.0%	89.03%	14.86%	1.24%	0.027%
0.5	100.0%	94.33%	19.97%	1.83%	0.042%
0.2	100.0%	97.17%	25.42%	2.56%	0.064%
0.1	100.0%	98.01%	28.21%	2.98%	0.078%
Definition	15.87%	2.28%	0.14%	0.003%	2.9x10 ⁻⁷

Southern Methodist Univ.

Significance" over-estimated

- Multiple tests over many sub-samples, but significance is calculated according to only one sub-sample (False-Positive problem due to multiple-testing)
- Significance" depends on <u>specifics</u> of the the <u>search method</u> (i.e. Step Size) and the <u>situation</u> it applies to.

Type I error rate

Measures how often <u>false signals</u> are claimed when there are only <u>backgrounds</u>

Significance" definition in HEP

Power/Sensitivity

Measures how often <u>real signals</u> can be <u>correctly identified</u> when they present

New physics with <u>unknown</u> location/shape:

Re-evaluate significance for each method so it follows HEP significance definition using

"Background-only experiments"

Power/Sensitivity to be determined by

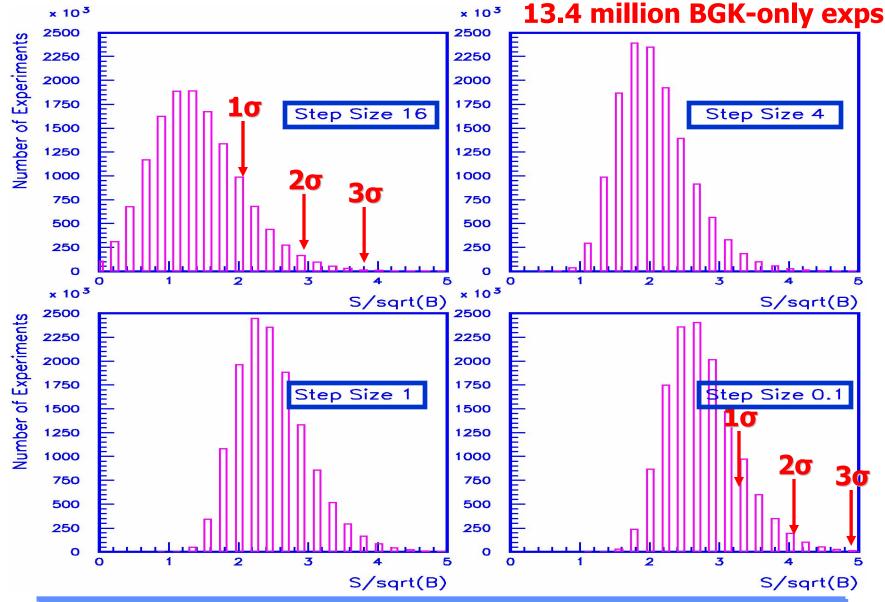
<u>"Signal-Embedded experiments"</u>

Compare **sensitivity** for different methods

Sensitivity depends on signal location: Vary signal location (Best/Worst scenario)

Vary amount of signal embedded

Southern Methodist Univ.

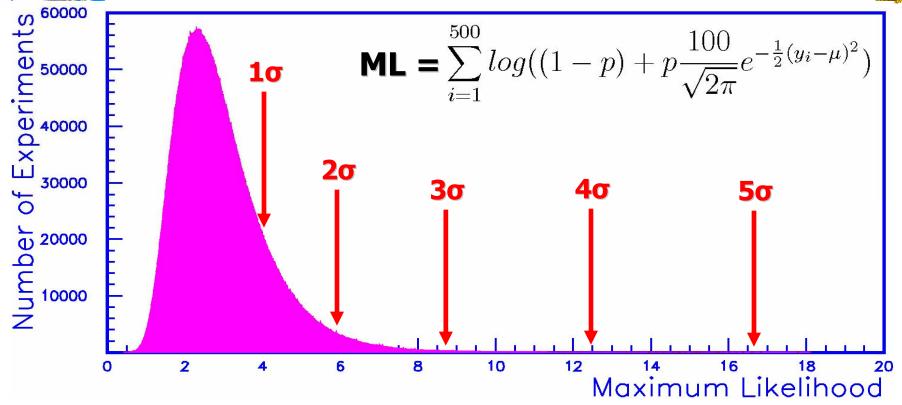

Apply Maximum Likelihood to <u>entire</u> sample Find <u>best fit</u> to the <u>entire</u> sample (scan available parameter space)

Re-evaluate significance first (same for SW), so they follows HEP significance definition using <u>**Background-only experiments**</u>

Comparing sensitivities of SW and NM How often signals are found **correctly** with a certain significance (rescaled with "BKG-only")

SW significance recalculation

Southern Methodist Univ.



S/ \sqrt{B} cutoff values using 13.4 million BKG-only exps

Step-Size	1σ	2σ	3σ	4σ	5σ
16	2.01	2.90	3.80	4.91	6.03
8	2.23	3.13	4.02	5.14	6.26
4	2.68	3.35	4.24	5.36	6.48
2	2.90	3.57	4.47	5.36	6.48
1	2.90	3.80	4.47	5.59	6.48
0.5	3.13	3.80	4.69	5.81	6.93
0.2	3.13	4.02	4.91	5.81	6.93
0.1	3.35	4.02	4.91	5.81	6.93

Recalculated significance for NM

Likelihood cutoff values using 13.4 million BKG-only exps

NM	1σ	2σ	3σ	4σ	5σ
Likelihood	4.00	5.94	8.71	12.48	16.61

Southern Methodist Univ.

$S/\sqrt{B} \sim 20/\sqrt{20} = 4.47$

	1σ	2 0	3σ	4 0	5σ
16	9834/0	8969/0	6302/0	2215/0	356/0
8	9694/0	7844/0	5435/0	1616/0	240/0
4	8932/0	7135/0	4542/0	1190/0	158/0
2	8439/0	6867/0	3642/0	1182/0	156/0
1	8086/4955	6365/3913	4032/2509	965/634	174/112
0.5	7795/7264	6812/6273	4020/3782	1046/965	130/100
0.2	7795/7264	6217/5747	3274/3061	1046/965	130/100
0.1	7538/7277	6414/6034	3416/3268	1119/1051	149/111
NW	9116	7406	4073	1209	206

Southern Methodist Univ.

$S/\sqrt{B} \sim 30/\sqrt{20} = 6.71$

	1σ	2 0	3σ	4 0	5σ
16	10000/0	10000/0	9963/0	9215/0	5936/0
8	10000/0	9993/0	9917/0	8792/0	5079/0
4	9998/0	9987/0	9841/0	8249/0	4238/0
2	9904/0	9886/0	9633/0	8210/0	4232/0
1	9542/6589	9532/6584	9412/6490	7787/5444	4560/3285
0.5	9249/8784	9246/8781	9152/8665	7743/7331	3847/3683
0.2	9249/8784	9238/8778	9046/8558	7743/7331	3847/3683
0.1	9183/8945	9178/8934	9006/8742	7792/7603	4049/3944
NW	9985	9974	9723	8024	4332

Southern Methodist Univ.

New physics with <u>unknown location or shape:</u> Significance calculation non-trivial!

- LHC "Discovery Potential" <u>over-estimated</u>, depends on <u>specifics</u> of the method (step-size and the situation it applies to, etc)
- Sensitivity" depends on <u>exact location</u> of signal, and <u>specifics</u> of the method and situation
- General procedures for significance calculation and comparison of different search methods
- A new method more sensitive to new physics, insensitive to the location of the new physics

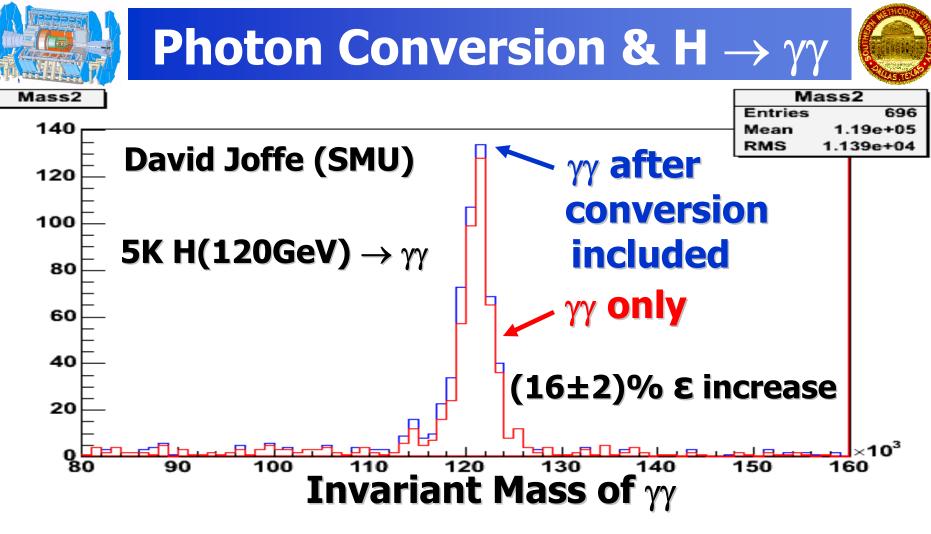
Southern Methodist Univ.

Talks at Higgs WG in Feb. and Dec. 2005 arXiv:physics/0509174, ATL-COM-PHYS-2005-052 by Y. Gao, L. Lu and X. Wang Published in Eur. Phys. J. C45, 659 (2006)

ATL-COM-PHYS-2006-009 by I. Koletsou, G. Unal and L. Fayard Significance in searching $H \rightarrow \gamma \gamma$ bw 110 to 140GeV <u>BKG fluctuation prob. increased by a factor of 25!</u>

A <u>real</u> problem to address in <u>ALL</u> searches for New Physics with <u>unknown location or shape</u>!

Southern Methodist Univ.



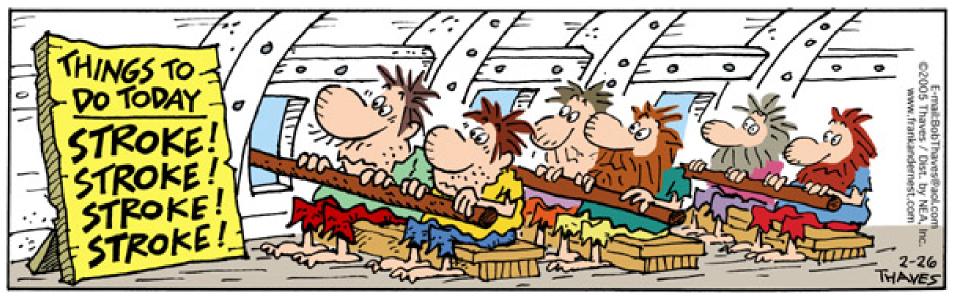
ATL-COM-PHYS-2006-009 (by G. Unal etc):

- Background: Born or Box for 10 fb⁻¹
- **H** $\rightarrow \gamma \gamma$ Signal: Gaussian
- Method: binned χ^2 fits, also compare with S/ \sqrt{B}
- **3σ" BKG fluct. Prob.:** <u>0.13%</u> for <u>fixed</u> Higgs mass
- Increased to <u>3%</u> if mass is bw <u>110GeV and 140GeV</u>
- Can <u>NOT</u> distinguish a "3σ" signal from a "3σ" statistical fluctuation of background events
- First physics channel to address the significance issue due to <u>unknown location</u> of the signal

ATLAS/LHC Searches for New Physics:

- Correctly evaluate the significance of each channel
- <u>Maximize</u> discovery potential for each channel

David Joffe's talks at e/ γ and Higgs WG meetings


F. Yang, B. Mellado, S.L. Wu (Wisconsin)'s talks at Higgs WG meetings

Southern Methodist Univ.

Southern Methodist Univ.