Semileptonic Results from CLEO **Yongsheng Gao** Southern Methodist University (CLEO Collaboration) ICHEP06, Moscow, July. 26 – Aug 2, 2006

CLEO-c data: 281 pb⁻¹ at \psi(3770)

D⁰/**D**⁺ inclusive semileptonic decays

First Observation of $D^+ \rightarrow \eta e^+ \nu$, $D^0 \rightarrow K^- \pi^+ \pi^- e^+ \nu$

Form Factors & Vcs, Vcd from $D^0/D^+ \rightarrow K/\pi e^+\nu$

First measurement of Form Factors in $D \rightarrow \rho e^+ v$

Form Factors in $D^+ \rightarrow K^-\pi^+ e^+\nu$

Exclusive semileptonic $b \rightarrow u$ | CLEO Y(4S) data

Southern Methodist Univ.

$D^0 \rightarrow Xe^+v$ and $D^+ \rightarrow Xe^+v$:

Inclusive semileptonic BR and spectrum

$$D^0 \rightarrow K^- e^+ v_{,} \pi^- e^+ v_{,}$$
 etc:

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2}{24\pi^3} \left| V_{cq'} \right|^2 p_P^3 \left| f_+(q^2) \right|^2$$

- Form Factors, V_{cd} , V_{cs} and V_{ub}

Southern Methodist Univ.

CESR and CLEO-c

Tracking: Drift Chambers Electron ID: CsI Cal. Hadron ID: RICH

Southern Methodist Univ.

Charm at Ψ(3770) vs ~Υ(**4S**)

- Large Cross-Section
- Low Multiplicity
- NO Fragmentation
- Kinematics Variables: —
- "Background Free"

$$M_D \equiv \sqrt{E_b^2 - |p_D|^2}$$
$$\Delta E = E_b - E_D$$
$$U = E_{miss} - P_{miss}$$

Unique Kinematics at Ψ (3770)

Southern Methodist Univ.

Motivation

→BR(D→XI_V) to compare with sum of exclusive BRs. →Precision measurement of lepton momentum spectrum. →Compare $\Gamma_{sl}(D^0)/\Gamma_{sl}(D^+)$ →Test HQT with $\Gamma_{sl}(D^0)/\Gamma_{sl}(D_s)$

Technique →D-Tag →Electron ID →Gold DTags only •K⁻π⁺ and K⁻ π⁺π⁺ →Charge correlation

Inclusive Semileptonic Results

Evidence for D⁰ \rightarrow **K**⁻ π ⁺ π ⁻**e**⁺ ν

Southern Methodist Univ.

281

b

$D \rightarrow K/\pi e_{V} BFs$ (Tag/Untag)

40% common samples, do NOT average them!

D Decay	Taç	Br. Fra	ic. (%)	Untag		PDG (%)
$D^0 \to K^- e^+ \nu$	3.58±0.0	5±0.05	3.56:	±0.03±0.	11	3.62±0.16
$D^0 \to \pi^- e^+ \nu$	0.309±0.0	12±0.006	0.301±0).011±0.0	10	0.311±0.030
$D^+ \to \overline{K}{}^0 e^+ \nu$	8.86±0.1	7±0.20	8.75:	±0.13±0.	30	7.2±0.8
$D^+ \to \pi^0 e^+ \nu$	0.397±0.0	27±0.028	0.383±0).025±0.0	16	0.38±0.19

Ratio	Measured (%)	PDG (%)	Ratio	Measured
$\frac{D^0 \to \pi^- e^+ \nu}{D^0 \to K^- e^+ \nu}$	8.5±0.3±0.1	8.6±0.7	$\frac{\Gamma(D^0 \to \pi^- e^+ \nu)}{\Gamma(D^+ \to \pi^0 e^+ \nu)}$	$1.95 \pm 0.15 \pm 0.14 \\ 1.99 \pm 0.15 \pm 0.10$
$\frac{D^+ \to \pi^0 e^+ \nu}{D^+ \to \bar{K}^0 e^+ \nu}$	4.4±0.3±0.1	4.6±1.4±1.7	$\frac{\Gamma(D^0 \to K^- e^+ \nu)}{\Gamma(D^+ \to \bar{K}^0 e^+ \nu)}$	1.02±0.02±0.02 1.03±0.02±0.04

Southern Methodist Univ.

Yongsheng Gao

reliminary

Form Factor Fit (Tag)

Hill series expansion (Phys. Lett. B 633, 61 (2006))

Southern Methodist Univ.

CLEO-c 281 pb⁻¹ Preliminary Results:

To be submitted to PRL & PRD

Decay Mode	$ V_{cx} \pm (stat) \pm (syst) \pm (theory)$	PDG Value
$D \rightarrow \pi e_{V}$ (av. D^{0} & D^{+})	0.229±0.007±0.005±0.024	0.224 ± 0.012
$D \rightarrow Ke_V (av. D^0 \& D^+)$	0.996±0.008±0.015±0.104	0.976 ± 0.014
Southern Methodist Univ.	Yongsheng Gao	17

Form Factors and Test of LQCD

Southern Methodist Univ.

liminary

Combine $|V_{cx}|f_{+}(0)$ values from fits with unquenched LQCD results for $f_{+}(0)$ (Phys. Rev. Lett. 94, 011601 (2005)) to extract $|V_{cs}|$ and $|V_{cd}|$.

Decay Mode	$ V_{cx} \pm (stat) \pm (syst) \pm (theory)$	PDG Value
$D \rightarrow \pi e_{V}$ (tag)	$0.234 \pm 0.010 \pm 0.004 \pm 0.024$	
$D \rightarrow \pi e_{V}$ (untag)	$0.229 \pm 0.007 \pm 0.005 \pm 0.024$	0.224 ± 0.012
$D \rightarrow Ke_{V}$ (tag)	$1.014 \pm 0.013 \pm 0.009 \pm 0.106$	
$D \rightarrow Ke_{V}$ (untag)	$0.996 \pm 0.008 \pm 0.015 \pm 0.104$	0.976 ± 0.014

Tag/Untag: 40% of comment sample.DO NOT AVERAGE!!!Expt. uncertaintiesVcs <2% Vcd~4%</td>LQCD uncertainty 10%

Since Vcs (W \rightarrow cs LEP) and Vcd (vN) are well measured, good agreement between PDG and CLEO-c results is primarily a check of the LQCD value for $f_+(0)$. Nevertheless, the most precise & robust Vcs & Vcd determinations using semileptonic decays to date.

Southern Methodist Univ.

Exclusive D \rightarrow pev Results

CLEO-c 281 pb⁻¹ Preliminary Results:

 $\begin{array}{l} B(D^{0} \rightarrow \rho^{-}e^{+}\nu) = (0.156 \pm 0.016 \pm 0.009)\% \\ B(D^{+} \rightarrow \rho^{0}e^{+}\nu) = (0.232 \pm 0.020 \pm 0.012)\% \\ B(D^{+} \rightarrow \omega e^{+}\nu) = (0.149 \pm 0.027 \pm 0.005)\% \end{array}$

$$\frac{\Gamma\left(D^{0} \to \rho^{-} e v\right)}{2 \cdot \Gamma\left(D^{+} \to \rho^{0} e v\right)} = 0.85 \pm 0.11$$

Southern Methodist Univ.

Exclusive D \rightarrow pev Results

Southern Methodist Univ.

Important for Vub, but challenges:

- Large $b \rightarrow c$ backgrounds
- Missing neutrino

$$B \longrightarrow X_{u} \ell
u \qquad X_{u} = \pi^{\pm}, \pi^{0}, \eta,
ho^{\pm},
ho^{0}, \omega, \eta' \qquad \ell = \mu, e$$

Neutrino Reconstruction: $p_v = p_{beam} - p_{visible}$

Signature: peaks in

$$\Delta E = (E_{X_u} + E_\ell + E_
u) - E_{ ext{beam}} \ M_{X_u\ell
u} = \sqrt{E_{ ext{beam}}^2 - |ec{p}_{X_u} + ec{p}_\ell + ec{p}_
u|^2}$$

CLEO data at Y(4S): CLEO II, II.V and III

15.8x10⁶ BB events (60% more data)
Supersedes PRD68, 072003 (lower lepton Pt)

Exclusive Semileptonic $\mathbf{B} \rightarrow \pi l \mathbf{v}$

Southern Methodist Univ.

back-up slides

Southern Methodist Univ.

Exclusive D⁺ \rightarrow **K**⁻ π ⁺**e**⁺ ν

Submitted

t0

PRD

hep-ex/0606010

K- π + mostly K* with some s-wave (first seen by FOCUS) For D \rightarrow V e+ ν , use 3 helicity amplitudes H₀(q²), H₊(q²), & H₋(q²) Add h₀(q²)•H₀(q²) to account for s-wave term

Use 281 pb⁻¹ tagged analysis

Exclusive D⁺ \rightarrow K⁻ π ⁺e⁺ ν

hep-ex/0606010

Southern Methodist Univ.

Neutrino Reconstruction

Neutrino Reconstruction

We use the whole event to reconstruct the event missing fourmomentum (P_{miss}). This can be associated with a neutrino if the missing mass is consistent with zero.

$$P_{miss} = P_{event} - \sum P_{charged} - \sum P_{neutral}$$
$$\Delta E = E_{K(\pi)} + E_e + |\mathbf{p}_{miss}| - E_{beam}$$
$$M_{bc} = \sqrt{E_{beam}^2 - (\mathbf{p}_{K(\pi)} + \mathbf{p}_e + \beta \mathbf{p}_{miss})^2}$$
$$\beta \text{ is a correction to the missing momentum}$$
$$E_{K(\pi)} + E_e + \beta |\mathbf{p}_{miss}| - E_{beam} = 0$$

Southern Methodist Univ.

Form Factors

$$f_{+}(q^{2}) = \frac{f_{+}(0)}{1-\alpha} \frac{1}{1-q^{2}/m_{pole}^{2}} + \frac{1}{\pi} \int_{(M_{p}+m)^{2}}^{\infty} dq'^{2} \frac{\operatorname{Im}(f(q'^{2}))}{q'^{2}-q^{2}}$$

General dispersion relation -- too complicated...

$$f_{+}(q^{2}) = \frac{f_{+}(0)}{\left(1 - q^{2}/m_{pole}^{2}\right)}$$

Simple Pole Model

$$f_{+}(q^{2}) = \frac{f_{+}(0)}{\left(1 - q^{2}/m_{pole}^{2}\right)\left(1 - \alpha q^{2}/m_{pole}^{2}\right)}$$

Modified Pole Model

$$f_{+}(q^{2}) = \frac{1}{P(q^{2})\phi(q^{2},t_{0})} \sum_{k=0}^{\infty} a_{k}(t_{0})[z(q^{2},t_{0})]^{k}$$

Series Parameterization

$$t_{\pm} \equiv \left(M_D \pm m_{\pi(K)}\right)^2, \quad z(q^2, t_0) = \frac{\sqrt{t_{\pm} - q^2} - \sqrt{t_{\pm} - t_0}}{\sqrt{t_{\pm} - q^2} + \sqrt{t_{\pm} - t_0}}$$

Hill & Becher, Phys. Lett. B 633, 61 (2006)

Southern Methodist Univ.