This contains some preliminary information that we will use later in the course.

Definitions.

- An ϵ–**neighborhood** (or just **neighborhood**) of a point $z_0 \in \mathbb{C}$ is the set of all points $z \in \mathbb{C}$ such that $|z - z_0| < \epsilon$.

- A **deleted neighborhood** of a point $z_0 \in \mathbb{C}$ is the set of all points $z \in \mathbb{C}$ such that $0 < |z - z_0| < \epsilon$ (i.e., it is the set of all points in an ϵ–neighborhood of z_0 except z_0, itself).

Definitions. Let S be a set in the complex plane.

1. z_0 is an **interior point** of S whenever there exists a neighborhood of z_0 that contains only points in S.

2. z_0 is an **exterior point** of S whenever there exists a neighborhood of z_0 that contains no points in S.

3. z_0 is a **boundary point** of S if every neighborhood of z_0 contains at least one point in S and at least one point not in S. The set of all boundary points of S is the **boundary** of S.

Example.

Definitions. Let S be a set in the complex plane.

1. S is **open** if it contains none of its boundary points.

2. S is **closed** if it contains all of its boundary points.

3. The **closure** of S is the closed set consisting of all points in S together with the boundary of S.
Example.

Sets can be neither open nor closed.

Example.

Definitions.

(1) An open set \(S \) is connected if each pair of points \(z_1, z_2 \in S \) can be connected by a polygonal line, consisting of a finite number of line segments joined end to end, that lies entirely in \(S \).

(2) A nonempty, open set that is connected is a domain.

Example.

Definition. A set \(S \) is bounded if there exists \(R \in \mathbb{R} \) such that every point of \(S \) lies in \(|z| = R \). Otherwise, \(S \) is unbounded.