Consider a complex-valued function w of a real variable t:

$$w(t) = u(t) + iv(t).$$

The derivative of w, $w'(t) = \frac{d}{dt}w(t)$, at a point t is given by

$$w'(t) = u'(t) + iv'(t),$$

provided u' and v' exist at t.

Let $z_0 = x_0 + iy_0$ (where z_0 is constant). Then

$$\frac{d}{dt}[z_0w(t)] = [(x_0 + iy_0)(u(t) + iv(t))]'$$

$$= [(x_0u(t) - y_0v(t)) + i(y_0u(t) + x_0v(t))]'$$

$$= (x_0u(t) - y_0v(t))' + i(y_0u(t) + x_0v(t))'$$

$$= (x_0u'(t) - y_0v'(t)) + i(y_0u'(t) + x_0v'(t))$$

$$= (x_0 + iy_0)(u'(t) + iv'(t))$$

$$= z_0w'(t).$$

So, $\frac{d}{dt}[z_0w(t)] = z_0w'(t)$.

Example. Find $\frac{d}{dt}(e^{z_0 t})$, where $z_0 = x_0 + iy_0$.

$$e^{z_0 t} = e^{(x_0 + iy_0)t}$$

$$= e^{x_0t}e^{iy_0t}$$

$$= e^{x_0t}(\cos(y_0 t) + i \sin(y_0 t)).$$
Differentiating,
\[
\frac{d}{dt}(e^{zt}) = \frac{d}{dt}(e^{x_0 t} \cos(y_0 t)) + i \frac{d}{dt}(e^{x_0 t} \sin(y_0 t))
\]
\[
= (x_0e^{x_0 t} \cos(y_0 t) - y_0e^{x_0 t} \sin(y_0 t)) + i(x_0e^{x_0 t} \sin(y_0 t) + y_0e^{x_0 t} \cos(y_0 t))
\]
\[
= (x_0 + iy_0)(e^{x_0 t} \cos(y_0 t) + ie^{x_0 t} \sin(y_0 t))
\]
\[
= z_0 e^{z_0 t}.
\]

Many rules from Calculus apply, but not all. For example, the Mean Value Theorem is not valid for complex-valued functions.

2 Definite Integrals of Functions $w(t) – Section 38$ of Brown and Churchill

Let $w(t) = u(t) + iv(t)$, $t \in \mathbb{R}$, where u and v are real-valued. Then,
\[
\int_a^b w(t) \, dt = \int_a^b u(t) \, dt + i \int_a^b v(t) \, dt,
\]
provided the integrals on the right exist.

This implies that
\[
\text{Re} \int_a^b w(t) \, dt = \int_a^b \text{Re}[w(t)] \, dt, \quad \text{and}
\]
\[
\text{Im} \int_a^b w(t) \, dt = \int_a^b \text{Im}[w(t)] \, dt.
\]

Example. Evaluate $\int_0^1 (t - i)^2 \, dt$.
\[
\int_0^1 (t - i)^2 \, dt = \int_0^1 ((t^2 - 1) - 2ti) \, dt
\]
\[
= \int_0^1 (t^2 - 1) \, dt + i \int_0^1 (-2t) \, dt
\]
\[
= \left. \frac{1}{3}t^3 \right|_0^1 - t \big|_0^1 + i \left. (-t^2) \right|_0^1
\]
\[
= \frac{1}{3} - 1 + i(-1)
\]
\[
= \frac{2}{3} - i.
\]
Properties of definite integrals of $w(t)$:

1. If $c \in [a, b]$, then $\int_a^b w(t) \, dt = \int_a^c w(t) \, dt + \int_c^b w(t) \, dt$

2. If $w(t) = u(t) + iv(t)$ and $W(t) = U(t) + iV(t)$ are continuous on $[a, b]$ and $W'(t) = w(t)$ for $t \in [a, b]$, then $U'(t) = u(t)$ and $V'(t) = v(t)$, and

$$\int_a^b w(t) \, dt = U(t)|_a^b + i V(t)|_a^b$$

$$= U(b) + iV(b) - (U(a) + iV(a))$$

$$= W(b) - W(a)$$

$$= W(t)|_a^b.$$

Example. Evaluate $\int_0^\pi e^{it} \, dt$.

$$\int_0^\pi e^{it} \, dt = \left. \frac{1}{i} e^{it} \right|_0^\pi$$

(since $\frac{d}{dt} \left(\frac{1}{i} e^{it} \right) = \frac{1}{i} \frac{d}{dt} (e^{it}) = \frac{i}{i} e^{it} = e^{it}$)

$$= \frac{1}{i} (e^{i\pi} - e^{i(0)})$$

$$= \frac{1}{i} (-1 - 1)$$

$$= \frac{-2}{i}$$

$$= 2i.$$

3 Contours – Section 39 of Brown and Churchill

Integrals of complex-valued functions of a complex variable are defined on curves in the complex plane.

A set of points $z = (x, y)$ in the complex plane is said to be an arc if

$$x = x(t), \ y = y(t), \ a \leq t \leq b,$$

where x and y are continuous functions of the real parameter t.

- This establishes a continuous mapping of the interval $a \leq t \leq b$ into the xy- or z-plane.
- Image points are ordered according to increasing values of $t.$
It is convenient to describe the points of an arc C by
\[z = z(t), \quad (a \leq t \leq b), \tag{2} \]
where $z(t) = x(t) + iy(t)$.

Definitions.
- The arc C is a **simple arc**, or Jordan arc, if it does not cross itself.
- If the arc C is simple, except that $z(b) = z(a)$, then C is a **simple closed curve**, or a Jordan curve.
- A simple closed curve is **positively oriented** when it is in the counterclockwise direction.

Examples.

1. \[z = \begin{cases} 1 + it, & 0 \leq t \leq 2 \\ t - 1 + 2i, & 2 \leq t \leq 4 \end{cases} \]

As is evident from the graph, this is a simple arc.

2. \[z = e^{i\theta}, \quad 0 \leq \theta \leq 2\pi \]
 is a simple closed curve oriented in the counterclockwise direction (i.e., positively oriented).

3. \[z = 2 + e^{-i\theta}, \quad 0 \leq \theta \leq 2\pi \]
 is the circle centered at $(2, 0)$ and oriented in the clockwise direction; it is a simple closed curve.

Exercise. Give a parameterization for the curve defined by the line from 0 to $1 + i$, followed by the line from $1 + i$ to 1.

Solution. First, sketch the curve.
The first line is simply \(y = x \), so the parameterization of this line is done by letting \(x = t \). Then, since \(y = x, y = t \) and \(z = t + it \) or \(z = (1 + i)t \), \(0 \leq t \leq 1 \). The second line is the line \(x = 1 \), so the parameterization is obtained by letting \(x = 1 \), \(y = t \), or \(z = 1 + it \), \(1 \leq t \leq 0 \), but we want \(t \) to be increasing from 1 to 2 (so \(t \) for the entire curve ranges from 0 to 2), so we write \(z = 1 + (2 - t)i \), \(1 \leq t \leq 2 \). Thus, the parametrized curve is

\[
z = \begin{cases} (1 + i)t, & 0 \leq t \leq 1, \\ 1 + (2 - t)i, & 1 \leq t \leq 2. \end{cases}
\]

The parametric representation used for any given arc is not unique. For example you can change the interval over which the parameter ranges to any given interval. Suppose \(t = \phi(\tau) \) (\(\alpha \leq \tau \leq \beta \)), where \(\phi \) is a real-valued function mapping \(\alpha \leq \tau \leq \beta \) onto \(a \leq t \leq b \) in representation (1). Assume that \(\phi \) is continuous with continuous derivative and \(\phi'(\tau) > 0 \). Then, (1) is transformed into

\[
z = Z(\tau), \ \alpha \leq \tau \leq \beta, \tag{3}
\]

where \(Z(\tau) = z[\phi(\tau)] \).

If \(x' \) and \(y' \) are continuous on \([a, b] \), then the arc \(z(t) = x(t) + iy(t) \) is a differentiable arc \((z'(t) = x'(t) + iy'(t)) \), and

\[
|z'(t)| = \sqrt{(x'(t))^2 + (y'(t))^2}
\]

is integrable on \([a, b] \). From Calculus, the length of \(C \) is

\[
L = \int_{a}^{b} |z'(t)| \, dt.
\]

The value of \(L \) does not depend on the parameterization, so

\[
L = \int_{\alpha}^{\beta} |z'[\phi(\tau)]| \phi'(\tau) \, d\tau.
\]

So, if (3) is used for \(C \), then

\[
Z'(\tau) = z'[\phi(\tau)]\phi'(\tau)
\]

\[
\implies L = \int_{\alpha}^{\beta} |Z'(\tau)| \, d\tau.
\]
Definitions.

(1) A contour, or piecewise smooth arc, is an arc consisting of a finite number of smooth arcs.

(2) A smooth arc is one whose unit tangent vector is well-defined with angle of inclination that changes smoothly as t varies over $[a, b]$.

(3) A simple closed contour is a contour that does not intersect itself, except that the initial and final values of $z(t)$ are identical.

4 Contour Integrals – Section 40 of Brown and Churchill

The integral of a complex-valued function $f(z)$, $z \in \mathbb{C}$, is defined in terms of the values $f(z)$ takes along a given contour C extending from a point $z = z_1$ to a point $z = z_2$ in the complex plane (i.e., it is a line integral).

Notation:

(a) $\int_C f(z) \, dz$

(b) $\int_{z_1}^{z_2} f(z) \, dz$

(b) is used when the value of the integral is path-independent (i.e., independent of the contour).

Suppose $z = z(t)$ ($a \leq t \leq b$) represents a contour C, extending from a point $z_1 = z(a)$ to $z_2 = z(b)$.

→ Assume that $f[z(t)]$ is piecewise continuous on $[a, b]$ and refer to $f(z)$ as piecewise continuous on C.

→ Define the contour integral

$$\int_C f(z) \, dz = \int_a^b f[z(t)]z'(t) \, dt.$$

Note: $z'(t)$ is piecewise continuous on $[a, b]$ since C is a contour.

The value of a contour integral is invariant under a change in the representation of the contour when the change is of the form discussed in Section 39 (Contours).
Properties of Contour Integrals

(1) \(\int_C z_0 f(z) \, dz = z_0 \int_C f(z) \, dz \)

(2) \(\int_C (f(z) + g(z)) \, dz = \int_C f(z) \, dz + \int_C g(z) \, dz \)

(3) Associated with contour \(C \) is contour \(-C \) consisting of the same set of points but with the contour extending from \(z_2 \) to \(z_1 \). For example, see the picture below.

\[\implies -C \text{ has parametric representation} \]
\[z = z(-t), \quad -b \leq t \leq -a. \]

So,
\[\int_{-C} f(z) \, dz = -\int_C f(z) \, dz. \]

Why?
\[\int_{-C} f(z) \, dz = \int_{-b}^{-a} f[z(-t)] \left[\frac{d}{dt} z(-t) \right] \, dt \]
\[= -\int_{-b}^{-a} f[z(-t)] z'(-t) \, dt \]
\[= -\int_{a}^{b} f[z(\tau)] z'('\tau) \, d\tau \]
\[= -\int_C f(z) \, dz. \]

(4) We say \(C = C_1 + C_2 \) if \(C \) consists of a contour \(C_1 \) from \(z_1 \) to \(z_2 \) followed by a contour \(C_2 \) from \(z_2 \) to \(z_3 \). Then, there is a value \(c \in (a, b) \) such that \(z(c) = z_2 \). So,
\[C_1 : z = z(t) \quad (a \leq t \leq c) \]
\[C_2 : z = z(t) \quad (c \leq t \leq b). \]

and
\[\int_a^b f[z(t)] z'(t) \, dt = \int_a^c f[z(t)] z'(t) \, dt + \int_c^b f[z(t)] z'(t) \, dt \]
\[\implies \int_C f(z) \, dz = \int_{C_1} f(z) \, dz + \int_{C_2} f(z) \, dz. \]
5 Some Examples – Section 41 of Brown and Churchill

(1) Evaluate $\int_C z^2 \, dz$ where C is the line segment from 0 to $2 + i$.

A parametric equation for C is

$$z(t) = (2 + i)t, \; 0 \leq t \leq 1.$$

Then,

$$\int_C z^2 \, dz = \int_0^1 [(2 + i)t^2][(2 + i)t]' \, dt$$

$$= \int_0^1 [(4 - 1 + i(4))t^2](2 + i) \, dt$$

$$= \int_0^1 [(3 + 4i)t^2](2 + i) \, dt$$

$$= \int_0^1 (3 + 4i)(2 + i) \, dt$$

$$= (3 + 4i)(2 + i) \int_0^1 t^2 \, dt$$

$$= \frac{2}{3} + \frac{11i}{3}.$$

(2) Evaluate $\int_C z^2 \, dz$ where C is the union of the line segment from $z = 0$ to $z = 2$ and then from $z = 2$ to $z = 2 + i$.

![Diagram of C1 and C2]

$C_1: \; z(t) = t, \; 0 \leq t \leq 2$

$C_2: \; z(t) = 2 + (t - 2)i, \; 2 \leq t \leq 3$
So,
\[
\int_C z^2 \, dz = \int_{C_1} z^2 \, dz + \int_{C_2} z^2 \, dz
\]
\[
= \int_0^2 t^2 \cdot 1 \, dt + \int_2^3 \left[2 + (t - 2)i\right]^2 i \, dt
\]
\[
= \frac{8}{3} + i \int_2^3 (4 - (t - 2)^2 + 4(t - 2)i) \, dt
\]
\[
= \frac{8}{3} + i \left[\frac{11}{3} + 2i\right]
\]
\[
= \left[\frac{2}{3} + \frac{11}{3}i\right].
\]

Is this true in general? We will see.

(3) Evaluate \(\int_{C_1} \overline{z} \, dz\), where \(C_1\) is the upper half of the circle \(|z| = 1\) from \(z = -1\) to \(z = 1\).

A parameterization for \(-C_1\) is \(z(\theta) = e^{i\theta}, \, 0 \leq \theta \leq \pi\). So,
\[
\int_{C_1} \overline{z} \, dz = -\int_{-C_1} \overline{z} \, dz
\]
\[
= -\int_0^\pi e^{-i\theta} \cdot ie^{i\theta} \, d\theta
\]
\[
= -\pi i.
\]

(4) Re-do (3) on the lower half of the unit circle.

A parameterization for \(C_2\) is \(z = e^{i\theta}, \pi \leq \theta \leq 2\pi\).
\[
\int_{C_2} \overline{z} \, dz = \int_\pi^{2\pi} e^{-i\theta} \cdot ie^{i\theta} \, d\theta
\]
\[
= \pi i.
\]
Note: If C is the unit circle, then $C = -C_1 + C_2$, where C_1 is from Example (3) and C_2 is from this example. So,

$$\int_C z \, dz = -(-\pi i) + \pi i = 2\pi i.$$

(5) Evaluate $\int_C (z - z_0)^n \, dz$, where C is the circle $|z - z_0| = r$.

So, $z = z_0 + re^{i\theta}$, $0 \leq \theta \leq 2\pi$ is a parameterization for C.

$$\int_C (z - z_0)^n \, dz = \int_0^{2\pi} (z_0 + re^{i\theta} - z_0) \cdot ire^{i\theta} \, d\theta$$

$$= \int_0^{2\pi} r^n e^{i(n+1)\theta} \, d\theta$$

$$= ir^{n+1} \int_0^{2\pi} e^{i(n+1)\theta} \, d\theta$$

$$= ir^{n+1} \left[e^{i(n+1)\theta} \right]_0^{2\pi} \left(\text{if } n \neq -1 \right)$$

$$= 0.$$

If $n = -1$, then

$$\int_C (z - z_0)^n \, dz = i \int_0^{2\pi} d\theta = 2\pi i.$$

Exercise: Evaluate $\int_C (z - 1) \, dz$, where C is the bottom half of the circle of radius 1 centered at $(1, 0)$ traversed counterclockwise.

Solution:

A parameterization of C is $z(\theta) = 1 + e^{i\theta}$, $\pi \leq \theta \leq 2\pi$. Then,

$$\int_C (z - 1) \, dz = 0.$$
6 Upper Bounds for Moduli of Contour Integrals – Section 43 of Brown and Churchill

Lemma 1. If \(w(t) \) is a piecewise continuous complex-valued function defined on an interval \(a \leq t \leq b \), then

\[
\left| \int_a^b w(t) \, dt \right| \leq \int_a^b |w(t)| \, dt.
\]

Proof. If \(\int_a^b w(t) \, dt = 0 \), the result is clearly true. So, suppose \(\int_a^b w(t) \, dt \neq 0 \). Then, since \(\int_a^b w(t) \, dt \) is a complex number, we may write it in exponential notation:

\[
\int_a^b w(t) \, dt = r_0 e^{i\theta_0}.
\]

So,

\[
 r_0 = e^{-i\theta_0} \int_a^b w(t) \, dt = \int_a^b e^{-i\theta_0} w(t) \, dt.
\]

Note that \(r_0 \) is a real number, so \(\int_a^b e^{-i\theta_0} w(t) \, dt \) must be a real number, as well. Since \(\text{Re} \, x = x, \, x \in \mathbb{R} \), we can write

\[
 r_0 = \text{Re} \int_a^b e^{-i\theta_0} w(t) \, dt
\]

\[
 = \int_a^b \text{Re} \left[\int_a^b e^{-i\theta_0} w(t) \right] \, dt
\]

\[
 \leq \int_a^b |e^{-i\theta_0} w(t)| \, dt
\]

\[
 = \int_a^b |e^{-i\theta_0}||w(t)| \, dt
\]

\[
 = \int_a^b |w(t)| \, dt
\]

Since \(r_0 = \left| \int_a^b w(t) \, dt \right| \), we have

\[
\left| \int_a^b w(t) \, dt \right| \leq \int_a^b |w(t)| \, dt.
\]

\(\square \)
Theorem 1. Let C be a contour of length L, and suppose that $f(z)$ is piecewise continuous on C. If there exists a constant $M > 0$ such that $|f(z)| \leq M$ for all z on C for which $f(z)$ is defined, then

$$\left| \int_C f(z) \, dz \right| \leq ML.$$

Proof. Let $z = z(t)$, $a \leq t \leq b$ be a parametric representation of C. Then

$$\left| \int_C f(z) \, dz \right| = \left| \int_a^b f[z(t)]z'(t) \, dt \right|$$

$$\leq \int_a^b |f[z(t)]z'(t)| \, dt$$

$$= \int_a^b |f([z(t)])||z'(t)| \, dt$$

$$\leq M \int_a^b |z'(t)| \, dt$$

$$= ML.$$

Examples.

(1) Let C be the arc of the circle $|z| = 2$ that lies in the first quadrant. Show that

$$\left| \int_C \frac{dz}{z^2 + 1} \right| \leq \frac{\pi}{3}.$$

Let $f(z) = \frac{1}{z^2 + 1}$. First, find M so that $|f(z)| \leq M$ on C. On C,

$$|f(z)| = \left| \frac{1}{z^2 + 1} \right|$$

$$= \frac{1}{|z^2 - (-1)|}$$

$$\leq \frac{1}{||z||^2 - 1}$$

(because $|z^2 - (-1)| \geq ||z||^2 - 1$)$$

= \frac{1}{2^2 - 1}$$

$$= \frac{1}{3}.$$

So,

$$\left| \int_C \frac{dz}{z^2 + 1} \right| \leq \frac{1}{3} \cdot \text{(length of C)} = \frac{1}{3} \cdot \frac{1}{4}(2\pi(2)) = \frac{\pi}{3} \cdot \checkmark$$

12
(2) Show that $\lim_{R \to \infty} \left| \int_{C_R} \frac{z + 4}{z^3 - 1} \, dz \right| = 0$, where C_R is the path $z = Re^{i\theta}$, $0 \leq \theta \leq \pi$, for $R > 1$.

Let $f(z) = \frac{z + 4}{z^3 - 1}$. We need to find M so that $|f(z)| \leq M$ on C_R.

$$\left| \frac{z + 4}{z^3 - 1} \right| = \frac{|z + 4|}{|z^3 - 1|} \leq \frac{|z| + 4}{||z^3| - 1|}$$

(because $|z^3 - 1| \geq ||z^3| - 1|$ and $|z + 4| \leq |z| + |4| = |z| + 4$)

$$= \frac{R + 4}{R^3 - 1}$$

$$= \frac{R + 4}{R^3 - 1}, \text{ where } R > 1.$$

Then,

$$\left| \int_{C_R} \frac{z + 4}{z^3 - 1} \, dz \right| \leq \frac{R + 4}{R^3 - 1} \cdot \text{(length of } C_R\text{)}$$

$$= \left(\frac{R + 4}{R^3 - 1} \right) \pi R$$

$$= \frac{\pi R^2 + 4\pi R}{R^3 - 1}.$$

Then,

$$0 \leq \lim_{R \to \infty} \left| \int_{C_R} \frac{z + 4}{z^3 - 1} \, dz \right| \leq \lim_{R \to \infty} \frac{\pi R^2 + 4\pi R}{R^3 - 1} = 0.$$

So,

$$\lim_{R \to \infty} \left| \int_{C_R} \frac{z + 4}{z^3 - 1} \, dz \right| = 0. \checkmark$$

Exercise. Let C denote the arc of the circle $|z| = 2$ that lies in the upper half plane. Show that

$$\left| \int_{C} \frac{z + 1}{z^2 - 2z + 3} \, dz \right| \leq 6\pi.$$

Solution. First, you must show that

$$|f(z)| = \left| \frac{z + 1}{z^2 - 2z + 3} \right| \leq \frac{|z| + 1}{||z - 1|^2 - 2|} \leq \frac{|z| + 1}{||z| - 1|^2 - 2|},$$

and then proceed as in the examples.
7 Antiderivatives – Section 44 of Brown and Churchill

Theorem 2. Suppose \(f(z) \) is a continuous function on a domain \(D \). If one of the following statements is true, then so are the others.

(a) \(f(z) \) has an antiderivative \(F(z) \) throughout \(D \).

(b) The integrals of \(f(z) \) along contours lying entirely in \(D \) and extending from any fixed point \(z_1 \) to any fixed point \(z_2 \) all have the same value, namely,

\[
\int_{z_1}^{z_2} f(z) \, dz = F(z)|_{z_1}^{z_2} = F(z_2) - F(z_1).
\]

(c) The integrals of \(f(z) \) around closed contours lying entirely in \(D \) have value 0.

Note: (b) says that the integral is path-independent.

Examples.

(1) Evaluate \(\int_C \frac{1}{z} \, dz \), where \(C \) is the circle of radius 1 centered at 2 traversed counterclockwise.

\[
\frac{1}{z} \text{ has antiderivative } \log z \text{ on the principal branch and } C \text{ lies entirely in the domain of definition, and since } C \text{ is a closed contour, } \int_C \frac{1}{z} \, dz = 0.
\]

(2) Evaluate \(\int_C z^2 \, dz \), where \(C \) is the semicircle of radius 1 centered at 2 traversed clockwise.

In this case, \(z^2 \) has an antiderivative, \(z^3 \), throughout the entire complex plane, so \(C \) is clearly in the domain of definition, and

\[
\int_C z^2 \, dz = \frac{z^3}{3}\bigg|_1^3 = \frac{26}{3}.
\]
8 Cauchy-Goursat Theorem – Section 46 of Brown and Churchill

Theorem 3. If a function \(f(z) \) is analytic at all points interior to, and on, a simple closed contour \(C \), then
\[
\int_C f(z) \, dz = 0.
\]

This theorem gives some indication of the power of analyticity.

Note: In order to apply the theorem, we must verify that the function to be integrated is analytic “inside” and on the contour \(C \).

We can now more easily re-do the first example from our discussion of antiderivatives.

Example. Evaluate \(\int_C \frac{1}{z} \, dz \), where \(C \) is the circle of radius 1 centered at 2 traversed counterclockwise.

\[
\int_C \frac{1}{z} \, dz = 0 \text{ because } f(z) = \frac{1}{z} \text{ is analytic on and inside } C. \text{ In fact, } \int_C z^n \, dz = 0 \text{ for } n \in \mathbb{Z}, \text{ since } f(z) = z^n \text{ is analytic on and inside } C.
\]

9 Simply Connected Domains – Section 48 of Brown and Churchill

Definition. A domain \(D \) is **simply connected** if every simple closed contour in \(D \) encloses only points in \(D \).

Idea: A simply connected region has no “holes.”

Theorem 4. If a function \(f \) is analytic throughout a simply connected domain \(D \), then
\[
\int_C f(z) \, dz = 0
\]
for every closed contour \(C \) lying in \(D \).

Corollary 1. A function \(f \) that is analytic throughout a simply connected domain \(D \) must have an antiderivative everywhere in \(D \).
10 Multiply Connected Domains – Section 49 of Brown and Churchill

A domain that is not simply connected is **multiply connected**.

Theorem 5 (Cauchy-Goursat on Multiply Connected Domains). Suppose that

(a) C is a simple closed contour traversed counterclockwise; and

(b) C_k ($k = 1, 2, \ldots, n$) are simple closed contours interior to C, all traversed clockwise, that are disjoint and whose interiors have no points in common.

If a function f is analytic on all of these contours and throughout the multiply connected domain consisting of the points inside C and exterior to each C_k, then

$$\int_C f(z) \, dz + \sum_{k=1}^n \int_{C_k} f(z) \, dz = 0.$$

Corollary 2 (Path Deformation Principle). Let C_1 and C_2 denote positively oriented simple closed contours, where C_1 is interior to C_2. If a function f is analytic in the closed region consisting of those contours and all points between them, then

$$\int_{C_1} f(z) \, dz = \int_{C_2} f(z) \, dz.$$

Idea: If path C_1 can be continuously deformed into C_2, only passing through points at which f is analytic, then

$$\int_{C_1} f(z) \, dz = \int_{C_2} f(z) \, dz.$$
Proof. We apply the Cauchy-Goursat on Multiply Connected Domains theorem.

If we look at the above picture, we see that \(C_1 \) is counterclockwise, so application of the theorem gives

\[
\int_{C_2} f(z) \, dz + \int_{-C_1} f(z) \, dz = 0 \implies \int_{C_2} f(z) \, dz = -\int_{-C_1} f(z) \, dz = \int_{C_2} f(z) \, dz.
\]

\[\square\]

Examples.

(1) Let \(A \) be the region bounded by the \(x \)-axis and the upper half of the circle \(|z| = R\), where \(R > 0 \) is fixed. Let

\[
f(z) = \frac{e^{z^2}}{(2R - z)^2}.
\]

For each closed contour \(C \) in \(A \), show that \(\int_{C} f(z) \, dz = 0 \).

\(f(z) \) is analytic for all \(z \neq 2R \implies f(z) \) is analytic on the entire region \(A \), which is simply connected. Therefore, \(\int_{C} f(z) \, dz = 0 \).

(2) Evaluate \(\int_{C} \frac{1}{z} \, dz \), where \(C \) is the ellipse \(x^2 + 4y^2 = 1 \), traversed counterclockwise.

\[
\int_{C} \frac{1}{z} \, dz = \int_{C_0} \frac{1}{z} \, dz = 2\pi i \text{ (previously computed)}.
\]
(3) Evaluate \(\int_C \frac{3z - 2}{z^2 - z} \, dz \), where \(C \) is given by traversed counterclockwise.

We deform \(C \) into the “dumbell” given in your notes, where \(C_0 \) and \(C_1 \) are circles of radius \(r < 1 \).

\[
\int_C f(z) \, dz = \int_{C_0} f(z) \, dz + \int_{C_2} f(z) \, dz + \int_{C_1} f(z) \, dz + \int_{-C_2} f(z) \, dz \\
= \int_{C_0} f(z) \, dz + \int_{C_1} f(z) \, dz \\
= \int_{C_0} \frac{3z - 2}{z^2 - z} \, dz + \int_{C_1} \frac{3z - 2}{z^2 - z} \, dz \\
= \int_{C_0} \left(\frac{2}{z} + \frac{1}{z - 1} \right) \, dz + \int_{C_1} \left(\frac{2}{z} + \frac{1}{z - 1} \right) \, dz \\
= 2 \int_{C_0} \frac{1}{z} \, dz + \int_{C_0} \frac{1}{z - 1} \, dz + 2 \int_{C_1} \frac{1}{z} \, dz + \int_{C_1} \frac{1}{z - 1} \, dz
\]

Note that \(\frac{1}{z - 1} \) is analytic on and inside \(C_0 \), and \(\frac{1}{z} \) is analytic on and inside \(C_1 \), so

\[
\int_C f(z) \, dz = 2(2\pi i) + 0 + 2(0) + \int_{C_1} \frac{1}{z - 1} \, dz = 4\pi i + \int_0^{2\pi} \frac{1}{(re^{i\theta} + 1) - 1} \cdot ire^{i\theta} \, d\theta = 4\pi i + \int_0^{2\pi} i \, d\theta = 4\pi i + 2\pi i = 6\pi i.
\]
(4) Evaluate \(\int_C \frac{e^z}{z^2 - 9} \, dz \) on \(C : |z| = 2 \), traversed counterclockwise.

\[f \text{ is analytic on and inside } C, \text{ since its only singularities are } z = -3 \text{ and } z = 3. \]

\[\Rightarrow \int_C \frac{e^z}{z^2 - 9} \, dz = 0. \]

Exercise. Find \(\int_C \frac{1}{z - 2 - i} \, dz \), where \(C \) is the rectangle \(0 \leq x \leq 4, 0 \leq y \leq 2 \), traversed counterclockwise.

Solution. Note that the only singularity is \(z = 2 + i \), which is inside the rectangle. So, let \(C_1 \) be the circle of radius \(r \) centered at \(z = 2 + i \), and use this to directly determine the value for the integral (i.e., as we did in Section 41). The correct answer is

\[\int_C \frac{1}{z - 2 - i} \, dz = 2\pi i. \]

11 The Cauchy Integral Formula – Section 50 of Brown and Churchill

Theorem 6. Let \(f \) be analytic everywhere on and inside a simple closed contour \(C \), taken in the positive sense. If \(z_0 \) is any point interior to \(C \), then

\[f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z - z_0} \, dz. \quad (5) \]

Equation (5) is the **Cauchy integral formula**.

Rewriting equation (5) gives

\[\int_C \frac{f(z)}{z - z_0} \, dz = 2\pi i f(z_0), \quad (6) \]

which can be used to evaluate integrals.
Examples.

(1) Compute \(\int_C \frac{z}{(9 - z^2)(z + i)} \, dz \), where \(C \) is the circle \(|z| = 2\) traversed counterclockwise.

First, we note that \(\frac{z}{(9 - z^2)(z + i)} \) is analytic except where \((9 - z^2)(z+i) = 0\), or \(z = -i, 3, -3 \).

We see that the only singularity inside \(C \) is \(z_0 = -i \). Re-write the integral in the form

\[
\int_C \frac{f(z)}{z - z_0} \, dz,
\]
or

\[
\int_C \frac{z}{(9 - z^2)(z + i)} \, dz = \int_C \frac{(9 - z^2)}{z + i} \, dz.
\]

Then, \(f(z) = \frac{z}{9 - z^2} \), which is analytic on and inside \(C \), and \(z_0 = -i \) is inside \(C \).

\[
\int_C \frac{z}{(9 - z^2)z + i} \, dz = 2\pi i \left(\frac{z}{9 - z^2} \right) \bigg|_{z = -i} = 2\pi i \left(\frac{-i}{9 - (-i)^2} \right) = \frac{\pi}{5}.
\]

(2) Compute \(\int_C \frac{e^z + \sin z}{z} \, dz \), where \(C \) is the circle \(|z - 2| = 3\) traversed counterclockwise.

Here, the function to be integrated is analytic except at \(z = 0 \), so \(f(z) = e^z + \sin z \) and \(z_0 = 0 \).

\(f(z) \) is analytic on and inside \(C \) and \(z_0 = 0 \) is inside \(C \), so

\[
\int_C \frac{e^z + \sin z}{z} \, dz = 2\pi i \left(e^z + \sin z \right) \bigg|_{z = 0} = 2\pi i.
\]
(3) Evaluate \(\int_C \frac{\cos z}{z^2 - 4} \, dz \), where \(C \) is given by

traversed counterclockwise.

\[
\frac{\cos z}{z^2 - 4} = \frac{\cos z}{(z + 2)(z - 2)},
\]

which is analytic for \(z \neq \pm 2 \). \(z_0 = 2 \) is the only singularity inside \(C \), so

\[f(z) = \frac{\cos z}{z + 2}. \]

\(f(z) \) is analytic on and inside \(C \), and \(z_0 = 2 \) is inside \(C \), so

\[
\int_C \frac{\cos z}{z^2 - 4} \, dz = \int_C \frac{\cos z}{z - 2} \, dz
\]

\[
= 2\pi i \left(\frac{\cos z}{z + 2} \right) \bigg|_{z=2}
\]

\[
= \frac{\pi i}{2} \cos 2.
\]

(4) Evaluate \(\int_C \frac{z^2 e^z}{2z - 1} \, dz \), where \(C \) is the circle \(|z| = 1 \) traversed clockwise.

![Diagram of circle C with points labeled -1 and 1]
First, we need to rewrite the integrand in the form \(\frac{f(z)}{z - z_0} \). Note that

\[
\frac{z^2 e^z}{2z - 1} = \frac{z^2 e^z}{z - \frac{1}{2}},
\]

which is analytic for \(z \neq \frac{1}{2} \), so define

\[
f(z) = \frac{z^2 e^z}{2} \quad \text{and} \quad z_0 = \frac{1}{2}.
\]

Then, \(f(z) \) is analytic on and inside \(C \), and \(z_0 \) is inside \(C \). Therefore,

\[
\int_C \frac{z^2 e^z}{2z - 1} \, dz = -\int_{-C} \frac{z^2 e^z}{z - \frac{1}{2}} \, dz
\]

(This is done because \(C \) is traversed clockwise, not counterclockwise.)

\[
= -2\pi i \left(\frac{z^2 e^z}{2} \right) \bigg|_{z=\frac{1}{2}}
\]

\[
= -\frac{\pi ie^{\frac{1}{2}}}{4}.
\]

Exercise. Evaluate \(\int_C \frac{\cosh z}{z^2 - 4z + 3} \, dz \), where \(C \) is the circle \(|z| = 2\) traversed counterclockwise.

Solution. The given integrand is analytic except where \(z^2 - 4z + 3 = 0 \), or except at \(z = 1, 3 \). Since only \(z = 1 \) is inside \(C \), we may set \(f(z) = \frac{\cosh z}{z - 1} \). Then, verify that \(f(z) \) and \(z_0 \) satisfy the requirements for the Cauchy integral formula, and apply it to obtain

\[
\int_C \frac{\cosh z}{z^2 - 4z + 3} \, dz = -\pi \cosh 1i.
\]

12 An Extension of the Cauchy Integral Formula

Section 51 of Brown and Churchill

Theorem 7 (Cauchy Integral Formula for Derivatives). Let \(f \) be analytic on a region \(A \). Then all derivatives of \(f \) exist on \(A \). Furthermore, for any simple closed contour \(C \) in \(A \), taken in the positive sense, if \(z_0 \) is any point interior to \(C \), then

\[
\frac{n!}{2\pi i} \int_C \frac{f(z)}{(z - z_0)^{n+1}} \, dz = f^{(n)}(z_0).
\]
Rewriting equation (7), we obtain

$$\int_C \frac{f(z)}{(z - z_0)^{n+1}} \, dz = \frac{2\pi i}{n!} f^{(n)}(z_0),$$

which can be used to evaluate integrals.

Examples.

(1) Compute $\int_C e^{5z} \frac{z^3}{z^2} \, dz$, where C is the circle $|z| = 1$ traversed counterclockwise.

The integrand is already in the form for which we may apply equation (8) with $f(z) = e^{5z}$, $z_0 = 0$, and $n = 2$. Since $f(z)$ is entire, $f(z)$ is analytic on and inside C, and $z_0 = 0$ is inside C, so

$$\int_C e^{5z} \frac{z^3}{z^2} \, dz = \frac{2\pi i}{2!} f''(0)$$

$$= \pi i \cdot 25e^{5(0)}$$

$$= \frac{25\pi i}{2}.$$

(2) Compute $\int_C \frac{2z + 1}{z(z - 1)^2} \, dz$, where C is given by

$$\int_C = \int_{C_1} + \int_{C_2} = \int_{C_1} - \int_{-C_2}$$

$$\int_{C_1} : f(z) = \frac{2z + 1}{z}, \quad z_0 = 1, \quad n = 1. \quad f \text{ is analytic on and inside } C_1,$$

$$\int_{C_1} \frac{2z + 1}{z(z - 1)^2} \, dz = \frac{2\pi i}{1!} \cdot \left. \frac{d}{dz} \left(\frac{2z + 1}{z} \right) \right|_{z=1}$$

$$= 2\pi i (-1)$$

$$= -2\pi i.$$
\[\int_{-C_2} : f(z) = \frac{2z + 1}{(z - 1)^2}, \quad z_0 = 0. \]
\[f \text{ is analytic on and inside } -C_2, \text{ so} \]
\[\int_{-C_2} \frac{2z + 1}{z} \, dz = 2\pi i \cdot \frac{2z + 1}{(z - 1)^2} \bigg|_{z=0} \]
\[= 2\pi i (1) \]
\[= 2\pi i. \]

Therefore,
\[\int_{C} \frac{2z + 1}{z(z - 1)^2} \, dz = -2\pi i - 2\pi i = -4\pi i. \]

(3) Evaluate \(\int_{C} (z - z_0)^k \, dz \), where \(C \) is the circle \(|z - z_0| = r\) traversed counterclockwise and \(k \in \mathbb{Z} \).

We must consider three cases: \(k \geq 0 \), \(k < -1 \), and \(k = -1 \).

\(k \geq 0 \): \(\int_{C} (z - z_0)^k \, dz = 0 \) by the Cauchy-Goursat theorem, since \(C \) is a simple closed contour and \(f(z) = (z - z_0)^k \) is analytic on and inside \(C \).

\(k < -1 \): Let \(k = -m \), where \(m > 1 \). Then, we look at
\[\int_{C} \frac{dz}{(z - z_0)^m} \, dz \implies f(z) = 1, n = m - 1. \]
Clearly, \(f \) is analytic on and inside \(C \) and \(z_0 \) is inside \(C \), so
\[\int_{C} \frac{dz}{(z - z_0)^m} \, dz = \frac{2\pi i}{(m - 1)!} \cdot \frac{d^{m-1}}{dz^{m-1}}(1) \bigg|_{z=z_0} = 0. \]

\(k = -1 \): Again, we obtain \(f = 1 \) and \(f \) is clearly analytic on and inside \(C \) and \(z_0 \) is inside \(C \), so
\[\int_{C} \frac{dz}{z - z_0} \, dz = 2\pi i \cdot f(z_0) = 2\pi i. \]

13 Some Consequences of Cauchy’s Integral Formula – Sections 52-54 of Brown and Churchill

1) Cauchy’s Inequalities

Theorem 8. Let \(f \) be analytic on a region \(A \) and let \(C \) be defined by \(|z - z_0| = R, \ z_0 \in A\). Assume that the disk given by \(|z - z_0| < R\) also lies in \(A \). Suppose \(|f(z)| \leq M\) for all \(z \) on \(C \). Then, for any \(n = 0, 1, 2, \ldots \),
\[|f^{(n)}(z_0)| \leq \frac{n!}{R^n} \cdot M. \]
Proof. By Cauchy’s integral formula,

\[
f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_C \frac{f(z)}{(z - z_0)^{n+1}} \, dz
\]

\[
\Rightarrow |f^{(n)}(z_0)| = \frac{n!}{2\pi} \left| \int_C \frac{f(z)}{(z - z_0)^{n+1}} \, dz \right|
\]

\[
\leq \frac{n!}{2\pi} \int_C \left| \frac{f(z)}{(z - z_0)^{n+1}} \right| |dz|
\]

\[
\leq \frac{n!}{2\pi} \cdot \frac{M}{R^{n+1}} \cdot \text{(length of } C\text{)}
\]

\[
= \frac{n!}{2\pi} \cdot \frac{M}{R^{n+1}} \cdot 2\pi R
\]

\[
= \frac{n!}{R^n} \cdot M.
\]

\[\square\]

2) Liouville’s Theorem

Theorem 9 (Liouville’s Theorem). If a function \(f \) is entire and bounded in the complex plane, then \(f(z) \) is constant throughout the plane.

Proof. By the Cauchy Inequalities, if \(n = 1 \), then

\[
|f'(z_0)| \leq \frac{M}{R}.
\]

Fix \(z_0 \) and take the limit as \(R \to \infty \) of both sides

\[
\Rightarrow |f(z_0)| = 0.
\]

This is true for every \(z_0 \in \mathbb{C} \), so \(f \) is constant. \[\square\]

3) Fundamental Theorem of Algebra

Theorem 10 (Fundamental Theorem of Algebra). Any polynomial \(p(z) = a_0 + a_1 z + \cdots + a_n z^n \) \((a_n \neq 0)\) of degree \(n \geq 1 \) has at least one zero; i.e., there is at least one point \(z_0 \) such that \(p(z_0) = 0 \).

4) Morera’s Theorem

Theorem 11 (Morera’s Theorem). Let \(f \) be continuous on a region \(A \) and suppose \(\int_C f(z) \, dz = 0 \) for every closed contour \(C \) lying in \(A \). Then \(f \) is analytic on \(A \).

5) The Maximum Modulus Principal – Section 54 of Brown and Churchill

Lemma 2. Suppose that \(|f(z)| \leq |f(z_0)| \) at each point \(z \) in some neighborhood \(|z - z_0| < \epsilon \) in which \(f \) is analytic. Then \(f(z) \) has the constant value \(f(z_0) \) throughout that neighborhood.
Theorem 12 (Maximum Modulus Principle). Let \(R \) be a closed, connected, bounded region. If \(f \) is continuous on \(R \) and analytic and not constant in the interior of \(R \), then \(|f(z)| \) achieves its maximum value on the boundary of \(R \), and never in the interior of \(R \).

The theorem is proved using repeated applications of the lemma.

Note: It can be proved that if a function satisfies the hypotheses of the Maximum Modulus Principle and \(f(z) \neq 0 \) for all \(z \in R \), then \(|f(z)| \) achieves its minimum value on the boundary of \(R \) and never in the interior of \(R \).

Example. Find the maximum of \(|\cos z| \) on \([0, 2\pi] \times [0, 2\pi]\)

- Since \(\cos z \) is entire, the Maximum Modulus Principle may be applied.
- So, we know that the maximum of \(|\cos z| \) occurs on the boundary of the square.
- Therefore, we must determine the maximum value of \(|\cos z| \) along each of the four boundary segments.

\[
\cos(z) = \cos(x + iy) \\
= \cos x \cos(iy) - \sin x \sin(iy) \\
= \cos x \cosh y - i \sin x \sinh y,
\]

since

\[
\cos(iy) = \frac{e^{-y} + e^y}{2} = \cosh y \\
\sin(iy) = \frac{e^{-y} - e^y}{2i} = i \sinh y.
\]

Then,

\[
|\cos z|^2 = (\cos x \cosh y)^2 + (-\sin x \sinh y)^2 \\
= \cos^2 x \cosh^2 y + \sin^2 x \sinh^2 y \\
= \cos^2 x \cosh^2 y + \sin^2 x \cosh^2 y - \sin^2 x \cosh y + \sin^2 x \sinh^2 y \\
= (\cos^2 x + \sin^2 x) \cosh^2 y - \sin^2 x (\cosh^2 y - \sinh^2 y) \\
= \cosh^2 y - \sin^2 x.
\]

- On the boundary \(x = 0 \), \(|\cos z|^2 \) has maximum \(\cosh^2(2\pi) \).
- On the boundary \(y = 0 \), \(|\cos z|^2 \) has maximum 1.
- On the boundary \(x = 2\pi \), \(|\cos z|^2 \) has maximum \(\cosh^2(2\pi) \).
- On the boundary \(y = 2\pi \), \(|\cos z|^2 \) has maximum \(\cosh^2(2\pi) \).

So, the maximum of \(|\cos z| \) on \([0, 2\pi] \times [0, 2\pi]\) is \(\cosh(2\pi) \).