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1 Examples of First-Order Models

1.1 Radioactive Decay

In Calculus II, you probably saw the model for radioactive decay. We will look at this model
in a bit more detail now. First, we make the following assumptions:

1. We have an object that will emit radiation if exposed to a certain substance.

2. The emissions are all of the same kind and they all decay by the same process (alpha,
beta, gamma emissions).

3. The decaying process is such that once a particular nucleus decays, it cannot repeat
the process again.

4. The probability of a given nucleus decaying in any time interval is constant.

If we have N undecayed nuclei present at time t, the number of nuclei that will decay between
t and t+4t must be proportional to the product of N and 4t; i.e.,

4N = −kN4t,
where k > 0 is the constant of proportionality, known as the decay constant. If we assume
that the number of nuclei N is a continuous function of time, we can divide both sides of
the equation by 4t and take the limit as 4t→ 0 to obtain the standard radioactive decay
model

dN

dt
= −kN.

The decay constant k is determined by experimental data. This equation also holds if we
consider the mass of radioactive element, instead of the number of nuclei (the total mass
is just the product of the mass of one atom multiplied by the number of atoms, and such
constant may be eliminated from the equation).

This is a separable differential equation, and its solution is

N(t) = N0e
−kt,

where N0 is the initial amount of radioactive element.
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1.2 Newton’s Law of Cooling

Newton’s law of cooling states that the surface temperature of an object changes at a rate
proportional to the difference between the ambient temperature and the temperature of the
object. So, if T (t) represents the temperature of an object at time t and Ta represents the
ambient temperature, we have

dT

dt
= k(Ta − T ).

This is also a separable differential equation, with solution

T (t) = Ta + ce−kt,

where c is determined by the initial temperature of the object.

1.3 Population Models

Consider the population of one species in a specified region, e.g., the number of pepole in
the world, the number of pine trees in a forest, the number of bacteria in an experiment.
We will ignore differences in the individuals comprising the group (e.g., male-female, age).
In formulating a model of the population growth of a species, we must decide what factors
affect that population. In some cases, the population size depends on many quantities.

Example: Sharks in the Adriatic Sea. What factors can affect the population size of
sharks in the Adriatic Sea?

1. The number of fish available for the sharks to consume.

2. The presence of a harmful bacteria.

3. Water temperature and salinity may be important factors, as well.

1.3.1 Exponential Growth

Suppose measurements of the population size of a species (not affected by any other) are
taken over an interval of time 4t. The rate of change of the population measured over the
time interval 4t is

4N
4t

=
N(t+4t)−N(t)

4t
.

The growth rate per unit of time R(t) is the rate of change of the population per individual,
i.e.,

R(t) =
N(t+4t)−N(t)

4tN(t)
.

Since the percent change in the population is 100
4N(t)

N(t)
= 100R(t)4t, R(t) is the percentage

change in the population per unit time.
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In general, the growth rate can depend on time and is calculated over a time interval of
length 4t. By its definition, the growth rate depnds on the measuring time interval. We
will now approximate the population as a continuous, differentiable function of time. So, we
can determine the instantaneous growth rate:

R(t) = lim
4t→0

N(t+4t)−N(t)

4tN(t)

=
1

N(t)
lim
4t→0

N(t+4t)−N(t)

4t

=
1

N(t)

dN(t)

dt
.

Note: Approximating the population as a continuous, differentiable function is most reason-
able for large populations.

The first model of population size, then, is to assume that the growth rate is constant, say
R(t) = R0. Then we obtain

dN

dt
= R0N,

which is similar to the radioactive decay model. If we are given a population at t0 (not
necessarily 0), N(t0) = N0, then the solution to this equation is

N(t) = N0e
R0(t−t0).

1.3.2 More Realism – Self-limiting Growth

The assumption of constant population growth is very unrealistic. It ignores the impact
of environmental factors such as climate, food suply, and economic factors. In general, the

growh rate
1

N

dN

dt
may not be constant but might depend upon the population size:

1

N

dN

dt
= R(N), or

dN

dt
= NR(N).

What are the properties of R(N)?

• For moderate-sized populations, growth occurs with only slight limitations from the
species’ environment.

• As N diminishes, R(N) should approach the growth rate without environmental influ-
ences.

• As the population size increases, it is expected to grow at a smaller rate due to limi-
tations on growth caused by an increase in population density, so R(N) decreases as
N increases.

• For simplicity, we will model growth rate for very small populations in the same way.
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The simplest function satisfying the above properties is the straight line,

R(N) = a− bN.

This gives us the logistic equation,

dN

dt
= N(a− bN).

Typically, the logistic equation is written as

dN

dt
= rN

(
1− N

K

)
, (1)

where r is the intrinsic growth rate (the maximal growth rate assuming no environmental
resistance) and K is the carrying capacity (the maximum sustainable population).

Equation (1) is also separable, although its solution is somewhat more complicated.

1.3.3 What About Extinction?

We can modify the growth rate to take into account the possibility of extinction of the species
if the population decreases below some minimal amount, θ. Thus, R(N) must be negative
below θ. The simplest function satisfying this property and the ones above is a quadratic
function, yielding the model

dN

dt
= rN

(
1− N

K

)(
N

θ
− 1

)
, (2)

where 0 < θ < K.

2 Slope Fields and Qualitative Assessments of Autonomous

First-Order ODEs

An autonomous first-order differential equation is an equation of the form

y′ = f(y).

In other words, t does not explicitly appear in the equation. All of the examples given in
Section 1 are modeled by autonomous equations. Autonomous equations may be analyzed
in terms of equilibrium points (also known as stationary points). All of the prior examples,
except the extinction model, may also be solved analytically, and we will discuss analytic
solutions a bit later.

First, we will define equilibrium points and then we will analyze them.
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Definition A point ye is an equilibrium point of the autonomous equation y′ = f(y) if
f(ye) = 0.

We would like to analyze the stability of an equilibrium point. An equilibrium point ye is
stable if whenever y(0) is sufficiently close to ye, then y(t) → ye as t → ∞. If there are
initial conditions y(0) for which y(t) diverges from ye, then ye is unstable.

One way to analyze stability is to analyze the slope field of the differential equation. The
slope field of a differential equation is the set of all segments with the correct slope through
each point in the solution plane. This can be done easiliy in Maple for any differential
equation using the DEplot command found in the DEtools library. We can use DEplot to
plot the slope field and possible solution curves for a differential equation. We will do this in
the context of analyzing the equilibrium points and their stability for the logistic equation.

Example: Logistic Equation

Given the logistic equation (1), reproduced here for simplicity,

dN

dt
= rN

(
1− N

K

)
,

the equilibrium points are determined by setting the derivative equal to zero and solving:

0 = rN

(
1− N

K

)
,

which gives us as equilibrium solutions N = 0, N = K. Now, we wish to analyze the
stability of these equilibria. For this, we will turn to the Maple worksheet. For the Maple
analysis, we will set r = 2 and K = 10. We first graph F (N) vs. N . From this graph, we
see that for 0 < N < K, F (N) > 0 so N is increasing, and for N > K, F (N) < 0 so N
is decreasing. Therefore, N = K is stable, and N = 0 is unstable. We will also look at
a qualitative analysis of the solution. We can easily sketch some solution curves by hand.
We will also check out the slope field of the solution using Maple. You will want to notice
that there is a point of inflection at N = K

2
, which makes sense since that is the point at

which F (N) attains its maximum. Note that the slope field also demonstrates that N = K
is stable and N = 0 is unstable, because all nonnegative solutions tend towards N = K as
t→∞ and all nonnegative solutions tend away from N = 0.

3 Analytical Solution to First-Order ODEs

3.1 Separable Equations

Definition A first order differential equation is separable if it can be written in the form

dy

dt
=
f(t)

g(y)
.
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A separable equation can be solved by multiplying both sides of the equation by g(y) and
integrating over t.

Example: Find a general solution of

dy

dt
=

y

1 + t2
.

∫
1

y

dy

dt
dt =

∫
1

1 + t2
dt

ln |y| = tan−1 t+ c

(the arbitrary constant on the left-hand side has been combined with the one on the right-hand side)

eln |y| = etan
−1 t+c

y = cetan
−1 t

3.2 Linear Equations

Definition A first order differential equation is linear if it can be written in the form

y′ + p(t)y = q(t), (3)

where p(t) and q(t) can be any function of t.

To solve a linear equation, first define µ(t) = e
∫
p(t)dt, called an integrating factor. If we

multiply (3) by µ(t), we obtain

e
∫
p(t)dty′ + p(t)e

∫
p(t)dty = q(t)e

∫
p(t)dt.

Noticing that

d

dt

(
e
∫
p(t)dty

)
=

d

dt

(
e
∫
p(t)dt

)
y + e

∫
p(t)dtdy

dt

= p(t)e
∫
p(t)dty + e

∫
p(t)dty′,

we see that we have
d

dt

(
e
∫
p(t)dty

)
= q(t)e

∫
p(t)dt.

To solve, integrate both sides with respect to t and solve for y.

Example: Find a general solution of

(t2 + 1)y′ + 3ty = 6t.

First, we need to divide both sides of the equation by t2 +1 to get the equation in the proper
form:

y′ +
3t

t2 + 1
y =

6t

t2 + 1
.
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Find the integrating factor:

p(t) =
3t

t2 + 1
=⇒ µ(t) = e

∫
3t

t2+1
dt

= e
3
2
ln(t2+1) = (t2 + 1)

3
2 .

Multiply both sides by µ(t) and solve:

(t2 + 1)
3
2y′ +

3t

t2 + 1
(t2 + 1)

3
2y =

6t

t2 + 1
(t2 + 1)

3
2

(t2 + 1)
3
2y′ + 3(t2 + 1)

1
2y = 6t(t2 + 1)

1
2

d

dt

(
(t2 + 1)

3
2y
)

= 6t(t2 + 1)
1
2∫

d

dt

(
(t2 + 1)

3
2y
)
dt =

∫
6t(t2 + 1)

1
2dt

(t2 + 1)
3
2y = 2(t2 + 1)

3
2 + c

y = 2 + c(t2 + 1)−
3
2

3.3 Analytically Solving the Logistic Equation

The logistic equation satisfies the definition for separable equations, so let’s solve it.

dN

dt
= rN

(
1− N

K

)
∫

1

N
(
1− N

K

) dN
dt
dt =

∫
rdt

The integral on the left-hand side needs to be solved using partial fractions:∫
1

N
(
1− N

K

) =

∫ (
1

N
+

1
K

1− N
K

)

= ln |N | − ln

∣∣∣∣1− N

K

∣∣∣∣
= ln

∣∣∣∣∣ N

1− N
K

∣∣∣∣∣ .
After some algebra, we obtain

N(t) =
cKert

K + cert
.

For any initial condition, we see that

lim
t→∞

N(t) = K,

again verifying that N = K is a stable equilibrium point.

We can also solve this equation in Maple using the dsolve function.
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