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1 Probability and Random Variables

The models that you have seen thus far are deterministic models. For

any time t, there is a unique solution X(t). On the other hand,

stochastic models result in a distribution of possible values X(t) at a

time t. To understand the properties of stochastic models, we need to

use the language of probability and random variables.

1.1 The Basic Ideas of Probability

1.1.1 Sample Spaces and Events

Probability: Probability is used to make inferences about populations.

Experiment: Some process whose outcome is not known with certainty.

Sample Space: The collection of all possible outcomes of an

experiment or process; denoted S .

Event: Any collection of possible outcomes of an experiment; denoted

A, B, etc.

Relative Frequency Interpretation of Probability

A random experiment is carried out a large number (n) of times and the

number (n(A)) of times that event A occurs is recorded. Then the

proportion of times that A occurs will tend to the probability of A:

n(A)
n

−→ P (A)
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Illustration of Long-Run Relative Frequency

Suppose a die is tossed repeatedly, and we count the number of times

that the toss results in six spots. We then plot the proportion of times

that the toss results in a six versus the number of tosses.

n n(A) n(A)
n

10 2 0.20000

100 23 0.23000

1000 160 0.16000

10000 1639 0.16390

100000 16618 0.16618
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Axioms:

1. P (A) > 0 for any event A

2. P (S) = 1

3. For any collection A1, A2, . . . of mutually exclusive events

(Ai ∩Aj = ∅ for i 6= j),

P (A1 ∪A2 ∪ · · ·) =
∞∑

i=1

P (Ai)

Properties:

• 0 ≤ P (A) ≤ 1

• P (∅) = 0

• Probability an event does not occur: P (A′) = 1− P (A).

• P (A ∪B) = P (A) + P (B)− P (A ∩B)

• If A and B are mutually exclusive,

P (A ∪B) = P (A) + P (B)
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1.1.2 Conditional Probability

For any two events A and B with P (B) > 0 the conditional probability

of A given that B has occurred :

P (A|B) =
P (A ∩B)

P (B)

The multiplication rule for P (A ∩B) is:

P (A ∩B) = P (A|B)P (B)

P (A ∩B) = P (B|A)P (A)

Law of Total Probability

Let A1, . . . , An be mutually exclusive and exhaustive events.

Exhaustive means that

A1 ∪A2 ∪ · · · ∪An = S.

Assume also that P (Aj) > 0 for each j. Then for any event B,

P (B) =
n∑

j=1

P (B|Aj)P (Aj)

If P (B) > 0, this law implies Bayes Theorem :

P (Ak|B) =
P (B|Ak)P (Ak)∑n
j=1 P (B|Aj)P (Aj)
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Example: Diagnostic Testing.

Define the two events:

A= event that disease is present

B= event that diagnostic test is positive

We usually know the following:

• Prevalence of disease, say P (A) = .001

• Sensitivity of test, say P (B|A) = 0.95

• Specificity of test, say P (B′|A′) = 0.90

We want to know, P (A|B) or P (A′|B′)

Solution:

P (A|B) = P (B|A)P (A)
P (B|A)P (A)+P (B|A′)P (A′)

= (0.95)(0.001)
(0.95)(0.001)+(1−0.90)(1−0.001)

= 0.0094

P (A′|B′) = P (B′|A′)P (A′)
P (B′|A′)P (A′)+P (B′|A)P (A)

= (0.90)(0.999)
(0.90)(0.999)+(1−0.95)(0.001)

= 0.9999444
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1.1.3 Independence

Two events A and B are independent if

P (A ∩B) = P (A)P (B).

They are dependent otherwise.

When P (A) > 0 and P (B) > 0, this definition is equivalent to

P (A|B) = P (A) and P (B|A) = P (B)

.

Extension of Independence to Several Events

We say that A1, A2, . . . , An are mutually independent if for every

subset {i1, . . . , ik} (k ≥ 2), we have

P (Ai1 ∩Ai2 ∩ · · · ∩Aik
) = P (Ai1)P (Ai2) · · ·P (Aik

)

We say that A1, A2, . . . , An are pairwise independent if

P (Ai ∩Aj) = P (Ai)P (Aj)

for every pair (i, j), i 6= j.

Pairwise independence does not imply mutual independence.
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1.2 Random Variables

Random variables help us to make a link between probability and

numbers that we observe as data.

A random variable (rv) is a numerical valued function defined on a

sample space. A random variable X “maps” an outcome in a sample

space to a numerical value.

The probability that a rv X takes a value in the set A is given by

P [X ∈ A] = P [X−1(A)].

We use capital letters such as X or Y to denote random variables.

Let s be an elementary outcome. A value, X(s), of X is denoted x.

A random variable is discrete if it can take on a finite or countable

number of values.

A continuous random variable takes on an uncountable number of

values.
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1.3 Probability Distributions of a Discrete R.V.

The probability distribution of a discrete r.v. is a list of the distinct values

x of X together with the associated probabilities:

p(x) = P (X = x)

By P (X = x), we mean P (Ax) where

Ax = {s ∈ S : X(s) = x}.

We can express p(x) as a function or in a table:

x x1 x2 x3 . . . xk

p(x) p(x1) p(x2) p(x3) . . . p(xk)

A function p(x) or px is a probability mass function (pmf) of some

random variable X if

• p(x) ≥ 0 all x

• ∑
all xi

p(xi) = 1
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An alternative way to represent a probability distribution is by using the

cumulative distribution function (cdf) :

F (x) = P (X ≤ x) =
∑

y:y≤x

p(y), −∞ < x < ∞

For a discrete random variable taking values on x1 < x2 < · · · < xk,

p(xj) = F (xj)− F (xj−1), j = 2, . . . , k.

1.3.1 Parameters of Probability Distributions

Suppose that for each value of α, p(x; α) is a probability distribution for

a random variable X . Then α is said to be a parameter of the

distribution. The collection of distributions

{p(x; α) : α ∈ A}

is called a parametric family of distributions.
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1.3.2 Expected Values of Discrete RV

• Mean of a discrete RV

The mean of a rv X is

E[X] = µ =
∑

x∈D
x · p(x)

whereD is the set of possible values of X .

• Expected value of a function of X

The expected value of a function h(X) is:

E[h(X)] = µh(X) =
∑

x∈D
h(x) · p(x)

If h(X) is a linear function of the form aX + b:

E(aX + b) = aE(X) + b

Chapter 1: Introduction to Probability and Random Variables Copyright c©2005 by Thomas E. Wehrly Slide 10
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• Variance of a discrete R.V.

The variance of a discrete R.V. is

V (X) = σ2

= σ2
X

= E[(X − µ)2]

• The standard deviation of X is

σ = σX =
√

V (X) =
√

σ2 = SD(X)

• The variance of a linear function aX + b is

V (aX + b) = a2V (X) = a2σ2

• Implications:

– V (aX) = a2V (X)

– SD(aX) = |a|SD(X)

– V (X + b) = V (X)

– SD(X + b) = SD(X)
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1.4 Continuous Random Variables

A continuous random variable can assume any value in an interval on

the real line. The distribution of a continuous random variable is

determined by the probability density function (pdf). The pdf of X is a

function f(x) such that for any numbers a and b where a < b,

P (a ≤ X ≤ b) =
∫ b

a

f(x)dx

The graph of f(x) is often called a density curve.
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x
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f

For f(x) to be a pdf it must satisfy:

1. f(x) ≥ 0 all x

2.
∫∞
−∞ f(x)dx = 1 (area under curve is 1).

An alternative method of expressing the distribution of a continuous
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random variable is using the cumulative distribution function (cdf). The

cdf of a continuous RV is defined as:

F (x) = P (X ≤ x) =
∫ x

−∞
f(y)dy
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Useful Properties:

• P (a ≤ X ≤ b) = F (b)− F (a)

• If X is a continuous RV with pdf f(x) and cdf F (x), then at every

x at which F ′(x) exists:

F ′(x) = f(x)
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1.4.1 Percentiles

For 0 ≤ p ≤ 1 the (100p)th percentile of the distribution of a

continuous RV X is a value xp such that p = F (xp)

1.4.2 Expected Values, Mean and Variance

The expected value of a function h(X) for a continuous rv is:

E[h(X)] =
∫ ∞

−∞
h(x) · f(x)dx

Some special cases:

Mean: E[X] = µ =
∫∞
−∞ x · f(x)dx

Variance: E[(X − µ)2] = σ2 =
∫∞
−∞(x− µ)2 · f(x)dx

Remember: E[(X − µ)2] = E[X2]− (E[X])2 = σ2

Note: The properties of expectation and variance of linear functions also

hold in the continuous case.
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1.5 Joint Probability Distributions

The joint cdf of two random variables X and Y is defined by

F (x, y) = P [X ≤ x, Y ≤ y].

We say that (X,Y ) is discrete if

P [(X, Y ) ∈ A] =
∑

(x,y)∈A

p(x, y)

where p(x, y) = P [X = x, Y = y] is the joint pmf of (X, Y ).

We say that (X,Y ) are jointly continuous rvs if there exists a function

called the joint pdf such that

P [(X, Y ) ∈ A] =
∫∫

A

f(x, y)dxdy

The expectation of a function h(X, Y ) of (X, Y ) is

E[h(X, Y )] =





∫ ∞

−∞

∫ ∞

−∞
h(x, y)f(x, y)dxdy if X,Y continuous

∑
x

∑
y

h(x, y)p(x, y) if X,Y discrete
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The random variables X and Y are independent if

P [X ∈ A, Y ∈ B] = P [X ∈ A]× P [Y ∈ B]

for any events A and B. This is equivalent to

F (x, y) = FX(x)FY (y), for all x, y for any rvs

f(x, y) = fX(x)fY (y), for all x, y for continuous rvs

p(x, y) = pX(x)pY (y), for all x, y for discrete rvs

1.5.1 Conditional Distributions

Conditional distributions are a basic tool in the description of stochastic

processes.

The conditional probability mass function of Y given that X = x0 is

fY |x0(y) =
fXY (x0, y)

fX(x0)
, for fX(x0) > 0.

Similarly, the conditional probability mass function of X given that

Y = y0 is

fX|y0(x) =
fXY (x, y0)

fY (y0)
, for fY (y0) > 0.
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Properties of the Conditional PMF

• fY |x0(y) > 0

• ∑
y fY |x0(y) = 1

• P (Y = y|X = x0) = fY |x0(y)

• We can find expectations using conditional pmfs.

Conditional Mean and Variance:

• E(Y |x) = µY |x =
∑

y yfY |x(y)

• V (Y |x) = σ2
Y |x =

∑
y(y − µ)2fY |x(y)

1.5.2 Conditional Distributions for Bivariate Continuous RVs

Given that (X, Y ) are continuous rvs with pdf fXY (x, y), the

conditional pdf of Y given that X = x0 is

fy|x0(y) =
fXY (x0, y)

fX(x0)
for fX(x0) > 0.

Properties:

• fy|x0(y) ≥ 0

• ∫∞
−∞ fy|x0(y)dy = 1

• P (Y ∈ B|X = x0) =
∫

B
fy|x0(y)dy = 1
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Conditional Mean and Variance:

• E(Y |X = x0) = µY |x0 =
∫∞
−∞ yfy|x0(y)dy

• V (Y |X = x0) = σ2
Y |x0

=
∫∞
−∞(y − µY |x0)

2fy|x0(y)dy

Remark: The conditional mean E(Y |X = x0) is known as the

regression function of Y on x.
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1.6 Some Special Cases

1.6.1 Poisson Distribution

Consider these random variables:

• Number of telephone calls received per hour.

• Number of days school is closed due to snow.

• Number of trees in an area of forest.

• Number of bacteria in a culture.

A random variable X , the number of events occurring during a given

time interval or in a specified region, is called a Poisson random variable.

The corresponding distribution:

X ∼ Poisson(λ)

where λ is the rate per unit time or rate per unit area.

p(x; λ) = P (X = x) =
e−λλx

x!
, x = 0, 1, 2, . . . , λ > 0

The mean and variance of a Poisson random variable are

E[X] = µ = λ

V [X] = σ2 = λ
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1.6.2 The Poisson Process

We will be examining various stochastic processes that correspond to

some of the deterministic population models studied so far.

A stochastic processes {X(t), t ∈ T} is an indexed collection of

random variables. We are interested in several properties of a stochastic

process:

• The distribution of X(t) for a fixed time t.

• The joint distribution of (X(t1), X(t2), . . . , X(tk)) for any times

t1, . . . , tk.

• The appearance of a sample path or realization of the stochastic

process: {X(t; s) : t ∈ T}.

We will show how the Poisson distribution arises in a stochastic process

for which we make a few reasonable assumptions. We first define a

counting process.

A stochastic process {X(t), t ≥ 0} is said to be a counting process if

1. X(t) ≥ 0

2. X(t) is integer valued

3. If s < t, then X(s) ≤ X(t).

4. For s < t, X(t)−X(s) equals the number of events that have

occurred in the interval (s, t].
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Let {X(t), t ≥ 0} be a counting process that satisfies

1. X(0) = 0

2. X(s) is independent of X(t + s)−X(s) for any s, t > 0
(independent increments).

3. The distribution of X(t + s)−X(s) depends only on t for any

s, t > 0 (stationary increments).

4. P (X(t + h)−X(t) = 1) = λh + o(h)

5. P (X(t + h)−X(t) ≥ 2) = o(h)

Then we can show that

Px(t) = P (X(t) = x) =
e−λt(λt)x

x!
, x = 0, 1, 2, . . .

The process {X(t), t ≥ 0} is called a Poisson process.

Outline of Proof

Consider

P0(t + h) = P0(t)P0(h) = P0(t)(1− λh) + o(h).

Then
P0(t + h)− P0(t)

h
= −λP0(t) +

o(h)
h

.

Let h → 0 and obtain P ′0(t) = −λP0(t). This implies that

P0(t) = eλt.
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For x ≥ 1,

Px(t + h) = P [X(t) = x,X(t + h)−X(t) = 0]

+ P [X(t) = x− 1, X(t + h)−X(t) = 1]

+ P [X(t + h) = x,X(t + h)−X(t) ≥ 2]

= Px(t)P0(h) + Px−1(t)P1(h) + o(h)

= (1− λh)Px(t) + λhPx−1(t) + o(h)

Divide both sides by h and let h → 0:

P ′x(t) = −λPx(t) + λPx−1(t), x = 1, 2, . . . .

The solution to this system of differential equations is

Px(t) =
e−λt(λt)x

x!
, x = 1, 2, . . . .

Figures: The first figure on the next page illustrates the variation in a

Poisson process with λ = 1 for various times. The red bars represent

the pmf of the Poisson process at t = 1, 2, . . . , 10.

The second figure depicts 10 realizations of a Poisson process with

λ = 1.

Chapter 1: Introduction to Probability and Random Variables Copyright c©2005 by Thomas E. Wehrly Slide 22



Mathematics 669

0 2 4 6 8 10

0
5

10
15

20

Poisson Process

x

y

0 20 40 60 80 100

0
50

10
0

15
0

Ten Realizations of a Poisson Process

time

co
un

t

Chapter 1: Introduction to Probability and Random Variables Copyright c©2005 by Thomas E. Wehrly Slide 23



Mathematics 669

1.6.3 Normal Distribution

The normal or Gaussian distribution has the pdf:

f(x; µ, σ) =
1√
2π σ

e−(x−µ)2/2σ2 −∞ < x < ∞

The mean and variance are

E(X) = µ

V (X) = σ2

The shorthand for this family of distributions as:

X ∼ N(µ, σ2)

Some Normal Distributions
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Normal Distributions with Different Means
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1.7 Gamma Distribution

The gamma distribution is a family of distributions that yields a wide

variety of skewed distributions. It is often used to model the lifetime

length of manufactured items.

Central to the gamma distribution is the gamma function:

Γ(α) =
∫ ∞

0

xα−1e−xdx α > 0

Some properties of the gamma function:

1. α > 1, Γ(α) = (α− 1)Γ(α− 1).

2. If n is positive integer: Γ(n) = (n− 1)!

3. Γ( 1
2 ) =

√
π.
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Using the properties of the gamma function, we obtain the pdf of the

gamma (α, β) distribution:

f(x; α, β) =
1

βαΓ(α)
xα−1e−x/β x ≥ 0, α > 0, β > 0

The mean and variance of the gamma distribution are:

E(X) = αβ

V (X) = αβ2

• α is the shape parameter and β is the scale parameter.

• If β = 1 then we call this the standard gamma distribution.

• If α = 1, the distribution is the exponential distribution.

Letting λ = 1/β, the pdf of the exponential distribution is

given by

f(x;λ) = λe−λx x ≥ 0, λ > 0
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Standard Gamma Density Curves
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1.7.1 Distribution of Elapsed Time in the Poisson Process

Recall the Poisson distribution and how it is used to calculate

probabilities for certain events in time or space:

Let T1 denote the time of the first event and Tn, n = 2, 3, . . . be the

time between the (n− 1)st and nth events. Then (T1, T2, . . .) are

independent and identically distributed (iid) exponential(λ) random

variables.

Let Sn = T1 + · · ·+ Tn. Then Sn has a gamma(1/λ, n) distribution.

This can be noted by the fact that

Sn ≤ t ⇔ X(t) ≥ n.

Hence,

P [Sn ≤ t] = P [X(t) ≥ n] =
∞∑

j=n

e−λt (λt)j

j!
.

We differentiate this to get the pdf of Sn:

f(t) =
λn

(n− 1)!
tn−1e−λt, t > 0.
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2 An Introduction to Stochastic Population

Models

References

[1] J. H. Matis and T. R. Kiffe. Stochastic Population Models, a

Compartmental Perspective. Springer-Verlag, New York, 2000.

[2] E. Renshaw. Modelling Biological Populations in Space and Time.

Cambridge University Press, Cambridge, 1991.

2.1 Some Ecological Examples

1. Spread of muskrats in the Netherlands

2. Invasion by Africanized honey bee

3. Infestations of honey bees by varroa mites
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2.2 A Quick Contrast Between Deterministic and

Stochastic Models

We consider the linear birth-death model where each individual gives

birth at rate a1 and dies at rate a2. We let X(t) be the number of

individuals in the population at time t.

2.2.1 Deterministic Model

The differential equation for the deterministic model is

dX(t)
dt

= (a1 − a2)X(t),

with solution

X(t) = X(0)e(a1−at)t.

The deterministic model results in either exponential growth or

exponential decay of the population.
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2.2.2 Stochastic Model

For the stochastic model, we make assumptions concerning events in a

small time interval of (t, t + ∆t) of length ∆t. We suppose that each

individual gives birth with probability a1∆t and dies with probability

a2∆t. This leads to the assumptions:

P (X(t + ∆t) = x + 1|X(t) = x) = a1x∆t + o(∆t)

P (X(t + ∆t) = x− 1|X(t) = x) = a2x∆t + o(∆t)

P (X(t + ∆t) = x|X(t) = x) = 1− (a1 + a2)x∆t + o(∆t)

We let px(t) = P [X(t) = x]. The above assumptions imply that

px(t + ∆t) = px(t)[1− (a1 + a2)x∆t] + px−1(t)(x− 1)a1∆t

+ px+1(t)(x + 1)a2∆t

since X(t) = x can be reached from X(t) = x− 1, x, x + 1 in a

small time interval. Letting ∆t → 0, we obtain the system of differential

equations, called the Kolmogorov forward equations, for px(t):

ṗx(t) = a1(x−1)px−1(t)− [(a1+a2)x]px(t)+a2(x+1)px+1(t)

for x > 0 and

ṗ0(t) = a2p1(t)
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The solution to these equations can be solved using standard differential

equation techniques. We now focus on the stochastic aspects.

Since the individuals behave independently, we can view the population

as comprising X0 separate populations, each of size 1. When X0 = 1,

the population size X(t) follows a geometric distribution with pmf

p0(t) = α(t)

px(t) = [1− α(t)][1− β(t)][β(t)]x−1, x = 1, 2, . . .

where

α(t) = a2(e
(a1−a2)t−1)

a1e(a1−a2)t−a2

β(t) = a1(e
(a1−a2)t−1)

a1e(a1−a2)t−a2

Standard results for the geometric distribution yield the mean and

variance functions for the population size:

E[X(t)] = X0e
(a1−a2)t

V [X(t)] = X0

[
a1+a2
a1−a2

]
e(a1−a2)t(e(a1−a2)t − 1)

• The mean function agrees with the deterministic model, however the

variance function depends on the magnitudes of the birth and death

rates as well as on their difference.
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• For the deterministic model, there is exponential growth if the birth

rate exceeds the death rate. However, for the stochastic model,

there is a probability of extinction even in this case:

p0(t) = α(t)X0

• We now look at the probability of ultimate extinction:

– If a1 < a2, p0(∞) = 1

– If a1 > a2, p0(∞) = (a2/a1)X0 .

– If a1 = a2, p0(t) = [a2t/(1 + a2t)]X0 → 1 as t →∞.

• It is easy to simulate the stochastic model. By examining sample

paths, one can see how single realizations of a process can give

misleading results.

– One can show that the time between events is exponentially

distributed with parameter R(X) = (a1 + a2)X(t).

– A birth occurs at this time with probability a1/(a1 + b1).

– Otherwise, a death occurs.
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• Simulation with a1 = 5, a2 = 1, X0 = 10
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• Simulation with a1 = 1, a2 = 5, X0 = 10
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• Simulation with a1 = 5, a2 = 5, X0 = 10
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• Simulation with a1 = 5, a2 = 4, X0 = 5
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3 Basic Methods for Single Population

Models

Basic notation:

• X(t) = the random population size at time t

• px(t) = Prob[X(t) = x], the probability that the random

population size equals x at time t

• p(t) = [p0(t), p1(t), . . . , px(t), . . .], the probability distribution of

X(t)

Goal: Solve for p(t) for any t > 0 based on simple assumptions

concerning X(t).

Once we know p(t), we (in theory) know all the properties of X(t).
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Example: Immigration-Death Model

X(t) = the number of insects in a field at a given time

Assume X(0) = 0.

1. P{X will increase by 1 unit due to immigration} = I∆t

2. P{X will decrease by 1 unit due to death} = µX∆t where the

death rate is linear, µX = aX .

We will show later that this results in X(t) being a Poisson random

variable with parameter

λ(t) = (1− e−at)I/a.

The Corresponding Deterministic Model:

Letting the derivative of X(t) be Ẋ(t), the model is

Ẋ(t) = I − aX(t).

This has solution

X(t) = (1− e−at)I/a
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3.1 Moments of X(t)

Moments are means of powers of X(t).

The mean or first moment of X(t) is

µ1(t) = E[X(t)] =
∞∑

x=0

xpx(t)

The ith moment of X(t) is

µi(t) = E[(X(t))i] =
∞∑

x=0

xipx(t)

Special Case: A Poisson random variable X has probability mass

function

p(x; λ) = P (X = x) =
e−λλx

x!
, x = 0, 1, 2, . . . , λ > 0

E[X] =
∑∞

x=0 x e−λλx

x! =
∑∞

x=1 x e−λλx

x!

=
∑∞

x=1
x
x

e−λλλx−1

(x−1)! = λ
∑∞

x=1
e−λλx−1

(x−1)!

= λ
∑∞

y=0
e−λλy

y! = λ
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3.2 Simulation of the Stochastic Process

• It is easy to simulate these basic stochastic processes by using a

random number generator to obtain random variables representing

the times between arrivals and the times between deaths.

• The times between arrivals will have an exponential distribution with

parameter I (mean 1/I).

• The times between deaths will have an exponential distribution with

parameter µX = aX(t).

• An algorithm for simulation of the process can be summarized as

follows:

1. Set X(0) = 0.

2. Generate t1 from an exp(I) distribution. Set X(t1) = 1.

3. If X(ti) = 0, generate tI from an exp(I) distribution. Set

ti = ti−1 + tI and X(ti) = 1.

4. Otherwise, generate tI from an exp(I) distribution and tD from

exp(aX(ti)) distribution.

– If tI < tD set ti = ti−1 + tI and X(ti) = X(ti−1) + 1.

– If tI > tD set ti = ti−1 + tD and X(ti) = X(ti−1)− 1.

5. Return to Step 3.
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A simpler algorithm is the following:

1. Generate t∗ from an exp(I + aX(t)) distribution. Set

ti = ti−1 + t∗.

2. Generate U from a Uniform(0, 1) distribution.

– If U < I/(I + aX(t)), set X(ti) = X(ti−1) + 1.

– Otherwise, set X(ti) = X(ti−1)− 1.
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Example: Let X(t) denote the number of corn earworms in a field at

time t. The immigration rate is I = 10 insects per day and the

departure (death) rate is µX = 0.1X per day. The process was

generated four times using these parameters. The solid line is the mean

function (or deterministic curve).
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3.3 Kolmogorov Differential Equations for Probability

Functions

A standard approach to solving for p(t) is using the Kolmogorov

differential equations. This approach makes use of assumptions

concerning the probabilities of various events occuring in a small interval

of length ∆t.

Suppose that X(t + ∆t) = x. There are the following possibilities for

the way this could occur starting at time t:

1. X(t) = x with no change from t to t + ∆t

2. X(t) = x− 1 with only a single immigration in ∆t

3. X(t) = x + 1 with only a single death in ∆t

4. Other possibilities involving two or more independent changes in ∆t

These assumptions yield the expression for the probability that

X(t + ∆t) = x:

px(t + ∆t) = P [X(t + ∆t) = x|X(t) = x]P [X(t) = x]

+ P [X(t + ∆t) = x|X(t) = x + 1]P [X(t) = x + 1]

+ P [X(t + ∆t) = x|X(t) = x− 1]P [X(t) = x− 1]

+ P [X(t + ∆t) = x|X(t) 6= x, x− 1, x + 1]

×P [X(t) 6= x, x− 1, x + 1]

= px(t)[1− I∆t− ax∆t] + px+1(t)[a(x + 1)∆t]

+ px−1(t)[I∆t] + o(∆t)

Chapter 3: Stochastic Models for Single Populations Copyright c©2005 by Thomas E. Wehrly Slide 45



Mathematics 669

We subtract px(t), divide by ∆t, and then take the limit as ∆t → 0:

ṗx(t) = Ipx−1(t)− (I + ax)px(t) + a(x + 1)px+1(t) for x > 0

and

ṗ0(t) = −Ip0(t) + ap1(t)

The solution to this set of differential equations is the Poisson distribution

with mean λ(t) = (1− e−at)I/a.

In matrix form, the Kolmogorov equations can be written in the form

ṗ(t) = p(t)R,

where R is a tridiagonal matrix. For our immigration-death model, the R

matrix is infinite with elements for i, j ≥ 0

ri,j =





ri,i+1 = I

ri,i−1 = ai

ri,i = −(ai + I)

ri,j = 0 for |i− j| > 1.
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3.4 Generating Functions

Generating functions are useful tools for finding the population size

distribution and moments of this distribution.

Suppose that X(t) is a discrete random variable with probability mass

function px(t), x = 0, 1, 2, . . . .

• The probability generating function (pgf) is defined as

P (s, t) =
∞∑

x=0

sxpx(t).

Probabilities can be obtained by differentiating P (s, t).

• The moment generating function (mgf) of X(t) is defined as

M(θ, t) =
∞∑

x=0

eθxpx(t).

One can show that

M(θ, t) =
∞∑

i=0

µi(t)θi/i!

Thus, one can find the ith moment of X(t) by differentiating the

mgf with respect to θ.

Chapter 3: Stochastic Models for Single Populations Copyright c©2005 by Thomas E. Wehrly Slide 47



Mathematics 669

• The cumulant generating function (cgf) is

K(θ, t) = log(M(θ, t))

with power series expansion

K(θ, t) =
∞∑

i=0

κi(t)θi/i!

The quantity κi(t) is called the ith cumulant of X(t). Cumulants

can be obtain by differentiating the cgf.

The cumulants are related to the moments:

κ1(t) = E(X(t)) = µ1(t)

κ2(t) = E[(X(t)− µ1(t))2] = V (X(t)) = µ2(t)− [µ1(t)]2

κ3(t) = E[(X(t)− µ1(t))3] = µ3(t)− 3µ2(t)µ1(t)− 2µ1(t)2

...
...
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Example: The population size random variable has the Poisson

distribution with parameter λ(t).

The pmf is

px(t) =
e−λ(t)λ(t)x

x!
, x = 0, 1, 2, . . .

• The pgf is

P (s, t) =
∞∑

x=0

sx e−λ(t)λ(t)x

x!
= e−λ(t)

∞∑
x=0

[sλ(t)]x

x!
= e(s−1)λ(t)

• The mgf is

M(θ, t) = P (eθ, t) = e(eθ−1)λ(t)

• The cgf is

K(θ, t) = log(M(θ, t)) = (eθ − 1)λ(t)

• The cumulants can be found by differentiation to be

κi(t) = λ(t), for all i
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3.5 PDEs for Cumulant Generating Functions

For many models it is more practical to form a system of PDEs for the

generating functions rather than for the probabilities. We multiply the

expression for ṗx(t) by sx and sum over x:

∑
sxṗx = I

∑
sxpx−1−

∑
(I+ax)sxpx+a

∑
(x+1)sxpx+1

The left hand side is ∂P (s, t)/∂t. Using the additional result that

∂P (s, t)
∂s

=
∑

xsx−1px(t)

we obtain

∂P (s, t)
∂t

= I(s− 1)P (s, t) + a(1− s)∂P (s, t)/∂s

The initial condition corresponding to X(0) = 0 is P (s, 0) = 1. The

solution to this linear PDE is

P (s, t) = exp{(s− 1)(1− e−at)I/a}
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The “random variable technique” in Bailey’s classic book on stochastic

processes enables one to directly write down the PDEs for the

generating functions for birth-death-migration models.

Let the possible changes in population size X(t) from t to t + ∆t be

denoted as

P [X(t) changes by j units] = fj(X)∆t + o(∆t)

For our immigration death model, the possible changes (or intensity

functions) are

f1 = I and f−1 = ax

For intensity functions of the form

f(x) =
∑

akxk

we define the operator notation:

f
(
s ∂

∂s

)
P =

∑
aksk ∂kP

∂sk and

f
(

∂
∂θ

)
M =

∑
ak

∂kM
∂θk

Bailey provides the following operator equations for the pgf and mgf:

∂P
∂t =

∑
j 6=0(s

j − 1) fj

(
s ∂

∂s

)
P (s, t)

∂M
∂t =

∑
j 6=0(e

jθ − 1) fj

(
∂
∂θ

)
M(θ, t)
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Example: Immigration-Death Process

For our immigration death model, the possible changes (or intensity

functions) are

f1 = I and f−1 = ax

Thus,

f1

(
s ∂

∂s

)
P (s, t) = Is0 ∂0P

∂s0 = IP (s, t)

f−1

(
s ∂

∂s

)
P (s, t) = as∂P

∂s

Hence,

∂P (s, t)
∂t

= I(s− 1)P (s, t) + (s−1 − 1)as
∂P (s, t)

∂s

Also,

f1

(
∂
∂θ

)
M(θ, t) = I ∂0M

∂θ0 = IM(θ, t)

f−1

(
∂
∂θ

)
M(θ, t) = a∂M

∂θ

We end up with

∂M

∂t
= I(eθ − 1)M + a(e−θ − 1)

∂M

∂θ
.

With the boundary condition M(θ, 0) = 1, the solution is

M(θ, t) = exp{(eθ − 1)(1− e−at)I/a}
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We can often find simpler PDEs for the cgf and use this to find ODEs for

the cumulants:

K(θ, t) = log M(θ, t).

Thus, for this model

∂K

∂t
= I(eθ − 1) + a(e−θ − 1)

∂K

∂θ
.

Using the series expansion of K and equating powers of θ, we obtain

κ̇1(t) = I − aκ1(t)

κ̇2(t) = I + aκ1(t)− 2aκ2(t)

κ̇3(t) = I − aκ1(t) + 3aκ2(t)− 3aκ3(t)

With the initial conditions κ1(0) = κ2(0) = κ3(0) = 0, the solution is

κ1(t) = κ2(t) = κ3(t) = (1− e−at)I/a
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This approach will prove useful for more complex models. We

summarize it as follows:

1. Use model assumptions to formulate intensity functions fj .

2. Use the operator equations to obtain the PDEs for the moment

generating function.

3. Transform these to PDEs for the cumulant generating function.

4. Use a series expansion to obtain differential equations for the

cumulants.

5. Solve the differential equations for the cumulants.
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4 Some Linear One-Population Models

4.1 Linear Immigration-Death Models

We consider models for a population of size X(t) with linear death rate

µX = aX

and immigration rate I . We will relax the assumption on initial population

size.

4.1.1 Deterministic Model

The deterministic model is

Ẋ(t) = −aX + I.

The solution with initial value X(0) = X0 is

X(t) = X0e
−at + (1− e−at)I/a.
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Example: Let X(t) = the number of Africanized honey bee (AHB)

colonies at time t in a given region. Suppose the following assumed

parameters:

I = 1.4 colonies/time

a = 0.08 (time−1)

X(0) = 2 colonies

The deterministic solution is

X(t) = 17.5− 15.5e−0.08t.
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4.1.2 Stochastic Model

Earlier we found the PDE for the pgf

∂P (s, t)
∂t

= I(s− 1)P (s, t) + a(1− s)
∂P (s, t)

∂s

The solution corresponding to X(0) = X0 is

P (s, t) = [1 + (s− 1)e−at]X0 exp{(s− 1)(1− e−at)I/a}

The pgf (or mgf) can be used to determine various properties of the

probability distribution of X(t).

• Consider the limiting distribution of the equilibrium population size

X∗ as t →∞. Since a > 0, the pgf of X∗ is

P (s,∞) = exp{(s− 1)I/a}.

This is the pgf of the Poisson distribution with parameter λ = I/a.

The limiting distribution is independent of the initial population size,

X0.
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• Note that the pgf is the product of two factors.

– The first factor is the pgf of a binomial distribution with n = X0

and p = e−at.

– The second factor is the pgf of a Poisson distribution with

parameter λ = (1− e−at)I/a.

• This implies that we can write

X(t) = X1(t) + X2(t)

where X1(t) and X2(t) are independent random variables with the

above binomial and Poisson distributions, respectively.

• The moment generating function is

M(θ, t) = P (eθ, t)

The cumulant generating function then is

K(θ, t) = (eθ − 1)(1− e−at)I/a + X0 log[1 + (eθ − 1)e−at]

The first three cumulants are

µ(t) = X0e
−at + (1− e−at)I/a

σ2(t) = µ(t)−X0e
−2at

κ3(t) = σ2(t)− 2X0e
−2at(1− e−at)
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4.1.3 Application to the AHB Population Dynamics

We return to the AHB population dynamics example with

I = 1.4 colonies/time

a = 0.08 (time−1)

X(0) = 2 colonies

The deterministic solution is

X(t) = 17.5− 15.5e−0.08t.

• The equilibrium solution is X∗ = 17.5. For the stochastic model,

the equilibrium solution X∗ is now a Poisson random variable with

parameter I/a = 17.5. The probability distribution and its

saddlepoint approximation appear in the figure:
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• The transient probability distributions are also of interest. They could

be obtained directly from the pgf or mgf. To illustrate the variation in

the AHB model, we will simulate the process several times using the

assumed parameters. Notice the large amount of variation about the

mean function.
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• Several more sample paths with the same parameter values:
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4.2 Linear Birth-Immigration-Death Models

We now consider a process that has a linear birth rate in addition to the

linear death rate:

λX = a1X and µX = a2X

The immigration rate is assumed to equal I .

4.2.1 Solution to the Deterministic Model

The deterministic model can be written as

Ẋ(t) = aX(t) + I where a = a1 − a2.

The solution is

X(t) = X0e
at + (eat − 1)I/a.

If a < 0, the equilibrium value is−I/a.
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4.2.2 Probability Distributions for the Stochastic Model

The Kolmogorov forward equations are

ṗx(t) = [I+a1(x−1)]px−1(t)−[I+(a1+a2)x]px(t)+a2(x+1)px+1(t)

for x > 0 and

ṗ0(t) = −Ip0(t) + a2p1(t)

The R matrix is tridiagonal with elements

ri,j =





ri,i+1 = I + ia1

ri,i−1 = ia2

ri,i = −I − i(a1 + a2)

ri,j = 0 for |i− j| > 1.

The equilibrium distribution can be derived from the Kolmogorov

equations by setting ṗ(t) = 0. Letting πi = pi(∞), we get

π1 = π0(I/a1)

π2 = π0I(I + a1)/2a2
2

...
...

πi = π0(a1/a2)i
(
i−1+(I/a1)

i

)
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If a1 < a2, we can solve for π0 by summing and setting the sum equal

to 1:

π0 = (−a/a2)i/a1

We find that the distribution of X∗ is the negative binomial distribution

with pmf

πi =
(

k − 1 + i

i

)
pk(1− p)i

where k = I/a1 and p = −a/a2.

4.2.3 Generating Functions

The intensity functions are

f1 = I + a1x and f−1 = a2x.

The resulting PDE is

∂P

∂t
= I(s− 1)P (s, t) + [a1s(1− s) + a2(1− s)∂P (s, t)/∂s.

The analytical solution is

P (s, t) =
aI/a1{a2(eat − 1)− (a2e

at − a1)s}X0

{(a1eat − a2)− a1s(eat − 1)}X0+I/a1
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It would be difficult to solve for the transition probabilities by successive

differentiation. However,

p0(t) = P (0, t) = aI/a1(a2e
at − a2)X0(a1e

at − a2)−X0−I/a1 .

The cumulant generating function is given by

∂K

∂t
= I(eθ − 1) +

{
a1(e−θ − 1) + a2(e−θ − 1)

} ∂K

∂θ
.

Using a series expansion, we obtain ODEs for the first three cumulants:

κ̇1(t) = I + aκ1

κ̇2(t) = I + cκ1 + 2aκ2

κ̇3(t) = I + aκ1 + 3cκ2 + 3aκ3

These can be solved recursively when X(0) = X0:

κ1(t) = X0e
at + (eat − 1)I/a

κ2(t) = X0ce
at(eat − 1)/a + I(eat − 1)(a1e

at − a2)/a2

κ3(t) = X0e
at

[
3c2(eat − 1)2 + a2(e2at − 1)

]
/2a2

+
[−2ca2 + (3c2 − a2)eat − 6a1ce

2at + 4a2
1e

3at
]
/2a3
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4.2.4 Application to AHB

Consider the linear birth-death-immigration model with parameters;

I = 1.4 a1 = 0.08

X(0) = 2 a2 = 0.16

Since the negative net growth rate is a = −0.08, the solution to the

deterministic model is the same as the linear death-immigration process

with the same death rate.

However, there is a large difference between the stochastic models in

the two situations. We saw earlier that the equilibrium distribution of X∗

was Poisson with mean 17.5 for the LID process. For the LBID model,

the equilibrium distribution is negative binomial with k = 17.5 and

p = 0.5. The LBID has much greater variance.
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Variance Functions for LID and LBID Models
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4.2.5 Simulation of the LBID Process

• The times between arrivals due to immigration will have an

exponential distribution with parameter I (mean 1/I).

• The times until the next death or birth will have an exponential

distribution with parameter µX = aX(t) where a = a1 + a2.

• The next event will be a birth with probability a1/a and a death with

probability a2/a.
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• The algorithm for simulation the process can be summarized as

follows:

1. Set X(0) = X0.

2. If X(ti) = 0, generate tI from exp(I) distribution. Set

ti = ti−1 + tI and X(ti) = 1.

3. Otherwise, generate tI from exp(I) distribution and tD from

exp(aX(ti)) distribution.

(a) If tI < tD set ti = ti−1 + tI and X(ti) = X(ti−1) + 1.

(b) If tI > tD , generate U = a uniform(0,1) variable.

i. If U < a1/a set ti = ti−1 + tD and

X(ti) = X(ti−1) + 1.

ii. If U > a1/a, set ti = ti−1 + tD and

X(ti) = X(ti−1)− 1.

4. Return to Step 3.
Several Realizations of LBID Process
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• Several More Realizations with the Same Parameter Values:
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5 Some Nonlinear One-Population Models

5.1 Nonlinear Birth–Death Models

We now look at population models with nonlinear death rates. Consider

the model with population rates

λX =





a1X − b1X
s+1 for X < (a1/b1)1/s

0 otherwise

µX = a2X + b2X
s+1

We call a1, a2 the intrinsic rates, and b1, b2 are the crowding

coefficients that add density dependence to the model. We will look at

the special case with s = 1 which leads to the logistic model.

5.1.1 Deterministic Model

We can write the deterministic model as

Ẋ(t) = aX − bXs+1

where a = a1− a2 and b = b1 − b2. This has solution

X(t) =
K

[1 + m exp(−ast)]1/s

with

K = (a/b)1/s and m = (K/K0)s − 1
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5.1.2 Probability Distributions for the Stochastic Model

Assume that u = (a1/b1)1/s is an integer. We can obtain the system

of u + 1 Kolmogorov differential equations for the probabilities:

ṗ0(t) = µ1p1(t)

ṗ1(t) = −(λ1 + µ1)p1(t) + µ2(t)p2(t)

ṗx(t) = λx−1px−1(t)− (λx + µx)px(t) + µx+1px+1(t),

for x = 2, . . . , u− 1

ṗu(t) = λu−1pu−1(t)− µupu(t)

• Since there are only a finite number of equations, one can obtain

numerical solutions.

• Since u is finite, a population size of 0 is an absorbing state and

ultimate extinction is certain, i.e., p0(∞) = 1.

• A process is said to be ecologically stable if the extinction does not

occur within a realizable time interval. A quantity of interest is the

expected time until extinction, Ex.

• The quasi-equilibrium distribution is based on the idea that the

population in equilibrium would not drift. The probabilities would

satisfy the relationship

µxpx(t) = λx−1px−1(t) for x = 2, . . . , u
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5.1.3 Generating Functions and Cumulants

The intensity functions are

f1 = a1x− b1x
s+1

f−1 = a2x + b2x
s+1

The PDE for the pgf has the form

∂P

∂t
= (s− 1)(a1s− a2)∂P (s, t)/∂s + s(s− 1)(b1s + b2)

∂2P

∂s2
.

This equation is analytically intractible. By substituting eθ for s we get

the PDE for the mgf, M(θ, t). Letting K log M , we obtain the equation

for the cgf:

∂K
∂t =

[
(eθ − 1)a1 + (e−θ − 1)a2

]
∂K
∂θ

+
[
(eθ − 1)(−b1) + (e−θ − 1)b2

] [
∂2K
∂θ2 +

(
∂K
∂θ

)2
]

Again, we can obtain differential equations for the cumulants. For s = 1,

the first cumulant is

κ̇1(t) = (a− bκ1)κ1 − bκ2

• The differential equation for the jth cumulant depends on cumulants

up to order j + s. This rules out finding exact solutions.
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• One proposed approach is to set all cumulants above a certain order

equal to zero and then solve the resulting finite system.

5.1.4 Application to AHB Population Dynamics

The nonlinear birth-death model with similar mean properties to the

earlier models for AHB population dynamics has parameter values:

a1 = 0.30 a2 = 0.02

b1 = 0.015 b2 = 0.001.

The solution to the deterministic model is

X(t) =
17.5

1 + 7.75e−0.28t
.
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• Simulation of the NLBD Model

1. Compute the birth and death rates: b(x) = a1x− b1x
2 for

x < (a1/b1) and d(x) = a2x + b2x
2.

2. Compute the time to the next event as exponential(b(x) + d(x))

random variable.

3. Generate a uniform(0,1) random variable U . If

U < b(x)/(b(x) + d(x)), then the next event is a birth.

Otherwise, it is a death.

• Some realizations of the NLBD model:

Some Realizations of the NLBD Model
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5.2 Nonlinear Birth-Immigration-Death Models

In addition to the assumptions of nonlinear birth and death rates, we

assume that there is a constant immigration rate I .

5.2.1 Deterministic Model

The deterministic model is

Ẋ(t) = I + aX − bXs+1

where a = a1− a2 and b = b1 − b2. This has solution for s = 1:

X(t) =
{

a + β

[
1− δe−βt

1 + δe−βt

]}
/2b

where

β = (a2 + 4bI)1/2

γ = (2bX0 − a)/β

δ = (1− γ)/(1 + γ)

The carrying capacity is

K = (a + β)/2b
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5.2.2 Simulation of the Stochastic Model

• The analysis of the stochastic model can be carried out by

numerically solving the differential equations for the cumulants.

• However, the simulation of this model is still quite simple.

• Replace the birth rate in the simulation procedure for the NLBD

model with b(x) = I + a1x− b1x
2. Steps 2 and 3 are the same

as before. The one care that needs to be taken is to check whether

the value of X(t) is above the carrying capacity.

5.2.3 Application to AHB Population Dynamics

The parameter values for the NLBID model keeping the same carrying

capacity as before are:

a1 = 0.30 a2 = 0.02

b1 = 0.012 b2 = 0.004816.

I = 0.25.

The solution to the deterministic model with X(0) = 2 is

X(t) = 8.3254 + 0.1749
[
1− δe−βt

1 + δe−βt

]

where δ = 5.4364 and β = 0.308571.
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5.2.4 Summary of Single Population Models

Properties Model

LBID NBD NBID

Deterministic easy easy difficult

solution

Stochastic exact exact numerical approx. numerical

model distribution solutions solutions

exact easy cumulant easy cumulant approx

cumulants approximations accurate for low I

true equilibrium true equilibrium

dist. does not exist dist. exists

Advantages widely used also widely used includes subtle

mechanistic basis density-dependent but important

growth immigration effect

Limitation for initial no immigration challenging estimation

period only for immigration
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6 Models for Multiple Populations

6.1 Compartmental Models

Compartmental models are widely used in the modeling of drug flow. We

will start by describing a deterministic model for the flow between various

compartments. Define the following quantities:

• Xi(t) = amount of substance in compartment i at time t

• fij(t) = flow rate of substance from j to i at time t. Compartment

0 refers to the system exterior.

• kij(t) = fij(t)/Xj(t) = proportional turnover rate from j to i at

time t.

• Ii(t) = fi0(t)/Xj(t) = flow rate to i from the exterior

• µj(t) = f0j(t)/Xj(t) = turnover rate from j to the exterior

Compartment i Compartment j
kij

kji

µjµi

IjIi

Figure 1: A General Compartmental Model
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6.1.1 The Deterministic Compartment Model

We will assume for now that all the flow rates are constants. Then the

deterministic model follows the system of differential equations

Ẋ1(t) = −(µ1 + k21 + · · ·+ kn1)X1 + k12X2 + · · ·+ k1nXn + I1

...

Ẋn(t) = kn1X1 + · · ·+ kn,n−1Xn−1

− (µn + k1n + · · ·+ kn−1,n)Xn + In

Define the following matrices:

Ẋ(t) =




Ẋ1(t)
...

Ẋn(t)


 , X(t) =




X1(t)
...

Xn(t)




K =




k11 · · · k1n

...
...

kn1 · · · knn


 , I =




I1

...

In



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The deterministic model can be written as

Ẋ(t) = KX(t) + I

The formal solution is

X(t) = exp(Kt)X(0) +
∫

exp[K(t− s)]Ids

6.1.2 Stochastic Compartmental Models

Let

1. Pij(t), i, j = 1, . . . , n; denote the probability that a random

animal starting in i at some arbitrary time, say t = 0, will be in j

after elapsed time t,

2. Xij(t) be the random number of animals starting in i at t = 0 that

are in j at time t,

3. P (t) = [Pij(t)] and X(t) = [Xij(t)] be matrices of

probabilities and counts, respectively,

4. E[X(t)] be the matrix of expected values of X .

5. kij , for i = 1, . . . , n, j = 0, . . . , n, i 6= j, be a probability

intensity coefficient defined by

Prob{a given animal in i transfers to j in (t, t+∆t)|X(t)} = kij∆t+o(∆t)
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where 0 represents the system exterior,

6. kii = −∑
j 6=i kij be the total outflow coefficient,

7. K = (kij) be the n× n coefficient matrix, and

8. λ1, . . . , λn be the eigenvalues of K .

Results I.

1. P (t) = exp(Kt)

2. If the λ’s are distinct and real, the Pij(t) elements have form

Pij(t) =
∑

`

Aij` exp(λ`t) for i, j = 1, . . . , n

where the Aij` are constants.

3. E[X(t)] = X(0)P (t)

where X(0) is a diagonal matrix of initial counts.

Result II.

If the λ’s are distinct and complex, the Pij(t) have damped oscillations

and may be written as

Pij(t) =
∑

`

Aij` exp(λ`t)+
∑

`

[Bij` sin(θij`t)+Dij` cos(θij`t)] exp(λ`t) for i, j = 1, . . . , n.
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6.2 Basic Methods for Two-Population Models

Let Xi(t), i = 1, 2 be the random size of population i at time t. Our

goal is to make certain simple assumptions about the population and

then find the joint distribution of

X(t) = [X1(t), X2(t)]′

We want to obtain the joint pmf of X as

px1,x2 = P [X1(t) = x1, X2(t) = x2].

6.2.1 A Birth-Immigration-Death-Migration Model

We will assume the populations can change according to the following

probabilities:

1. P [Xi will increase by 1 due to immigration] = Ii∆t,

2. P [Xi will increase by 1 due to birth] = λiXi∆t,

3. P [Xi will decrease by 1 due to death] = µiXi∆t,

4. P [Xi will increase by 1 and Xj will decrease by 1
due to migration] = kijXj∆t for i 6= j,
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How do we solve for the distribution of (X1(t), X2(t))?

That is, we wish to find the pmf of (X1(t), X2(t)):

px1,x2(t) = P [X1(t) = x1, X2(t) = x2]

Our approach will be similar to that for single-population models.

• Form the Kolmogorov equations for px1,x2(t).

• Obtain the PDEs for the bivariate pgf:

P (s1, s2, t) =
∑

x1,x2

sx1
1 sx2

2 px1,x2(t).

• Obtain differential equations for the joint cumulant functions.

• Obtain exact or numerical solutions for the cumulant functions.
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6.3 Simulation of Predator-Prey Model

We earlier studied a deterministic predator-prey model where

• X1(t) = the number of prey at time t

• X2(t) = the number of predators at time t

Their relationship is driven by the system of differential equations:

Ẋ1 = X1(r1 − b1X2)

Ẋ2 = X2(−r2 + b2X1)

We make the following assumptions to obtain the analogous stochastic

model:

P [X1(t + ∆t) = x1 + 1|X1(t) = x1, X2(t) = x2] = r1x1∆t

P [X1(t + ∆t) = x1 − 1|X1(t) = x1, X2(t) = x2] = b1x1x2∆t

P [X2(t + ∆t) = x1 + 1|X1(t) = x1, X2(t) = x2] = b2x1x2∆t

P [X2(t + ∆t) = x1 − 1|X1(t) = x1, X2(t) = x2] = r2x2∆t

This results in a Markov process with birth and death rates for the two

populations given by the terms that are multiplied by ∆t.
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We use the following algorithm to generate a realization of the

predator-prey process:

• Compute the birth and death rates:

B1(x1, x2) = r1x1

D1(x1, x2) = b1x1x2

B2(x1, x2) = b2x1x2

D2(x1, x2) = r2x2

• Compute the intensity until the next event:

R = B1 + D1 + B2 + D2

• Generate the time until the next event:

T ∗ = −ln(U1)/R

• Decide which event occurs by generating U2

– If U2 < B1/R, then X1 = x1 + 1

– If B1/R < U2 < (B1 + D1)/R, then X1 = x1 − 1

– If (B1 + D1)/R < U2 < (B1 + D1 + B2)/R, then

X2 = x2 + 1

– Otherwise, X2 = x2 + 1.
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6.4 Simulation of a Competition Model

We earlier studied a deterministic competition model where

• X1(t) = the number of individuals of species 1 at time t

• X2(t) = the number of individuals of species 2 at time t

Their relationship is driven by the system of differential equations:

Ẋ1 = X1(r1 − s11X1 − s12X2)

Ẋ2 = X2(r2 − s21X1 − s22X2)

We make the following assumptions to obtain the analogous stochastic

model:

P [X1(t + ∆t) = x1 + 1|X1(t) = x1, X2(t) = x2] = r1x1∆t

P [X1(t + ∆t) = x1 − 1|X1(t) = x1, X2(t) = x2] = x1(s11x1 + s12x2)∆t

P [X2(t + ∆t) = x1 + 1|X1(t) = x1, X2(t) = x2] = r2x2∆t

P [X2(t + ∆t) = x1 − 1|X1(t) = x1, X2(t) = x2] = x2(s21x1 + s22x2)∆t

This results in a Markov process with birth and death rates for the two

populations given by the terms that are multiplied by ∆t.
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We use the following algorithm to generate a realization of the

two-species competition process:

• Compute the birth and death rates:

B1(x1, x2) = r1x1

D1(x1, x2) = x1(s11x1 + s12x2)

B2(x1, x2) = r2x2

D2(x1, x2) = x2(s21x1 + s22x2)

• Compute the intensity until the next event:

R = B1 + D1 + B2 + D2

• Generate the time until the next event:

T ∗ = −ln(U1)/R

• Decide which event occurs by generating U2

– If U2 < B1/R, then X1 = x1 + 1

– If B1/R < U2 < (B1 + D1)/R, then X1 = x1 − 1

– If (B1 + D1)/R < U2 < (B1 + D1 + B2)/R, then

X2 = x2 + 1

– Otherwise, X2 = x2 + 1.
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