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Abstract—One of the main challenges currently firefighters
are facing in search and rescue operations is battling the heavy
smoke inside a space that needs to be searched for people and
animals. In this work, we develop an integrated system composed
of two unique sensing mechanisms that are capable of real-
time detection and localization of humans and animals in deep
smoke to improve the situational awareness of firefighters on the
scene. We make use of data from a micro-Doppler sensor and
an infrared camera and train a DCNN algorithm to localize a
human in dense smoke in real-time. Experimental results reveal
that the proposed system can detect a human in heavy smoke
with an average of 98% validation accuracy.

Index Terms—Deep learning, human detection in heavy smoke,
data fusion, artificial intelligence.

I. INTRODUCTION

Firefighters are tasked with high-stress difficult situations in
search and rescue operations where vision can be obstructed
by fog and debris. By using intelligent sensing and processing
technology, the efficiency and success rate of firefighters in
saving victims can be increased.

The goal of this research work is to effectively and ef-
ficiently obtain and analyze information gathered from an
infrared (IR) camera and a radar sensor, perform spectrogram
analysis of the radar data, and relay relevant classification
and identification of objects of interest in real time. This
system can aid firefighters in real-time by obtaining crucial
information from these two sensors for processing. Intelligent
inferences from reliable technology during high-stress situa-
tions that can involve life or death will allow firefighters to
safely navigate through hazardous environments. The proposed
system can be integrated into a handheld device, a drone, or
a robot that can be sent for missions in search and rescue
operations inside a dense smoke environment.

To perform human classification, deep convolutional neural
network (DCNN) and data fusion algorithms will be utilized,
programmed in Python scripting language on a Raspberry Pi
4. By using DCNN, data fusion algorithms, and a combined
micro-Doppler sensor and IR camera system, the detection of
objects of interest, e.g., a human or an animal, in low visibility
dense smoke environments can be greatly improved.

While there have been several research works, such as [1]
and [2], that have studied the use of infrared cameras to assist
firefighters in decision-making in high-stress situations, very

little work have been done to combine multiple sensors for
detecting a human in a heavy smoke environment. With the
ability to gather different kinds of information from the micro-
Doppler sensor and IR camera in various situations, there is a
chance that artificial intelligence (AI) based tools can become
a norm for firefighters, and save more lives in the near future.

Related Work: Li et al. [3] address various radar tech-
nologies such as Doppler, frequency-modulated continuous
wave (FMCW), interferometry, and ultra-wideband (UWB)
radar about human activity recognition (HAR) and highlight a
pertinent issue - actions recorded with radar in “controllable
environments” with “little interference”. This issue is partially
addressed in [4] with a proposed method to reduce noise and
remove “non-target micro-motion interference”.

Sakai and Aoki [5] discuss the utility of millimeter-wave
radar combined with a gyro sensor to address the issue of
obstruction of firefighters’ views in dense smoke. After that,
the data is used to form a signal-reflection dataset that will
be utilized to construct a 3D map via 3D image processing
techniques.

Authors in [6] and [7] propose convolutional neural net-
works (CNNs) for human and object detection in thermal
images with the explicit goal of aiding firefighting operations.
The proposed CNN models are able to achieve a validation
accuracy of 96.3%.

Towards wildfire detection and monitoring, [8] provides an
overview of current (2016) IR and visible light sensors, con-
tinuous monitoring systems such as unmanned aerial vehicles
(UAVs), evaluation scenarios (laboratory, controlled burns,
field trials), and metrics for human or automated monitoring.

Authors in [9], [10], and [11] all discuss the uses of infrared
technology and thermal imaging to obtain data from a distance
in various environments. This suggests that the ability to
obtain data from afar generates viable data for datasets in
identification and can prove useful in practice and various
implementations.

Oliveira and Wehrmeister [12] utilize a multi-rotor UAV to
perform data gathering and surveillance, altogether lowering
the risks of sending actual humans to assess situations that may
harm them. Cheaper methods of UAV surveillance in search
and rescue missions are discussed, allowing this technology
to be more adaptable if it is required.
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Not much work has been done exploring the benefits of both
an IR camera and a radar sensor to detect humans in heavy
smoke. Therefore, in this work, we develop an integrated
system composed of an IR camera and radar sensor that is
capable of real-time detection and localization of humans and
animals in heavy smoke. We train the two sets of data using
a deep convolutional neural network (DCNN) algorithm to
localize a human in dense smoke in real time. Experimental
results reveal that the proposed system can detect a human in
heavy smoke with 98% validation accuracy.

The rest of the paper is organized as follows. In Section
II, we describe the system overview, followed by the human
detection in heavy smoke using an IR camera in Section
III and a radar sensor in Section IV. The deep convolution
neural network algorithm is presented in Section V. After
illustrating experimentation results in Section VI, we draw the
main conclusions in Section VII.

II. SYSTEM OVERVIEW

The system is composed of two parts, a training phase, and a
testing phase. During the training phase, different movements
in front of the IR camera are captured, cropped, and then
organized in predefined folders. Similarly, the data collected
by the micro-Doppler radar after amplification and analog
to digital conversion are converted to spectrograms, which
are then cropped and organized in predefined folders. The
organized data set is used for training the DCNN algorithm
to produce two pre-trained models, one for the IR camera and
the other for the radar spectrograms. Fig. 1 shows the flow
diagram of the training and testing phase.

Fig. 1. The data flow for the system training and system testing.

The two pre-trained deep learning models are then ported
onto a Raspberry Pi 4 micro-computer for live detection of a
human in a dense smoke environment. The two sensors, the IR
camera, and the micro-Doppler sensor capture the data in real-
time using the Raspberry Pi 4 micro-computer. The gathered
IR camera data as well as the newly generated spectrograms

obtained from the micro-Doppler radar are fed into the pre-
trained deep learning models to detect the presence of a human
in heavy smoke. Once the trained model detects a human it
informs the user whether he/she is at near, medium, or far
range, i.e., 1m, 5m, or 10m from the sensors, respectively.

III. HUMAN DETECTION WITH INFRARED CAMERA

The IR camera captures the intensity of waveforms within
the IR spectrum of 300 GHz - 430 THz, as opposed to the
visible spectrum of 430 THz - 770 THz. The temperature of
an object is correlated with its black body radiation which
in turn decreases the wavelength of emitted IR waves. Thus
lower wavelengths are generally represented as “bright” while
longer wavelengths are generally represented as “dark”. We
utilize a FLIR Lepton 3.5 IR camera with a breakout board,
as shown in Fig. 2. The Lepton 3.5 IR camera has a resolution
of 160×120 pixels and a field of view of 71◦ angle-diagonal.

Fig. 2. Flir Lepton 3.5 IR camera with PureThermal 2 Board.

Fig. 3. Human in Heavy Smoke captured using Lepton 3.5 IR camera.

Samples from the FLIR Lepton 3.5 IR Camera with and
without heavy smoke presence, are shown in Fig. 3 and Fig.
4, respectively. As we can see, unlike a visible light camera
the thermal camera is not affected by heavy smoke, it can still
clearly detect a human in a heavy smoke environment.

When gathering images from the IR camera, we observed
that the camera would normalize the background, as shown in
Fig. 3. Accordingly, we modified the software of the IR camera
so that the camera would no longer normalize the images. In
Fig. 5 we show several sample images of a human at different
distances and one with no human without normalization. We
trained our DCNN on the images without normalization as a
human might not be seen if normalization happens when an
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Fig. 4. Human in No Smoke captured using Lepton 3.5 IR camera.

object that is much warmer than a human is within the IR
camera view.

Fig. 5. IR images without normalization of a human walking at 1m, 5m,
10m, and No Human.

IV. HUMAN DETECTION WITH RADAR SENSOR

To gather the presence of a human in heavy smoke we
utilize the HB100 radar sensor, which is an X-Band Bi-
Static Doppler transceiver module. It is a built-in dielectric
resonator oscillator and a pair of microstrip patch antenna
arrays operating at 10.25 GHz. The HB100 radar sensor as
well as the transceiver block diagram are shown in Fig. 6.

Fig. 6. HB100 Radar Sensor and the Transceiver Block Diagram.

The micro-Doppler radar sensor HB100’s output voltage
is too low to be analyzed and converted to a spectrogram.
Accordingly, it is first amplified with the amplification circuit,
shown in Fig. 7, and the output is taken at the output pin of
the LM234 Operational Amplifier.

Fig. 7. Amplification circuit for HB100 micro-Doppler sensor.

The soldered amplification circuit for the HB100 micro-
Doppler sensor is shown in Fig. 8. It utilizes two op-Amps
one acts as an inverting amplifier while the other changes the
polarity back to the original positive value.

Fig. 8. Soldered amplification circuit for HB100 micro-Doppler sensor.

A spectrogram is used to indicate the magnitude of various
frequencies present within a signal over time, thus emphasiz-
ing small patterns within a captured waveform that are not
easily identified from the waveform itself. The x-axis repre-
sents the passage of time, the y-axis indicates the frequency (in
the case of the observed micro-Doppler waveform, the side-
band frequency), and the color indicates the magnitude in the
defined magnitude and frequency “bin”.

A fast Fourier transform (FFT) is applied to every A
(variable) based on the FFT size, moving forward B (variable)
samples based on the FFT time step. The FFT is applied every
FFT time step until the end of the waveform is reached by a
given FFT operation based on FFT size. The FFT determines
the magnitude for every frequency within the FFT size and
fills a “bin” on the spectrogram with the width FFT time step.
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The “bin” size is determined by the FFT sample step and the
sampling frequency.

Fig. 9. Human walking from radar at 1m, 5m, 10m, and No Human.

Sample spectrograms generated using the test data are
shown in Fig. 9 for a person walking at 1m, 5m and
10m, and No Human, from the HB100 micro-Doppler sensor,
respectively, each taken with an FFT size of 512 samples,
FFT time step of 64 samples, and sampling frequency of
1000 Hz. As we can observe from Fig. 9, unique spectral
characteristics are apparent in those four spectrogram plots for
a person walking at 10m from the radar sensor versus a person
walking at 5m or 1m from the sensor and no human present.
Using the deep learning algorithms, which are discussed in
the next section, we will train it to recognize those unique
characteristics for human detection at a different distance from
the radar sensor.

V. DEEP LEARNING MODEL TRAINING

We utilize a DCNN algorithm to determine if a human
is present in a heavy smoke environment by using images
captured from the IR camera and the generated spectrograms
using the micro-Doppler radar sensor.

The architecture of a DCNN algorithm implemented to train
the machine learning model for the IR camera image input is
shown in Fig. 10. A similar DCNN architecture is used for the
spectrogram image machine learning model training. The IR
images and spectrograms are first resized to 100 × 120-pixel
images. The input images undergo a feature extraction network
by first being processed by the convolution layer consisting
of 8 convolution filters of size 20 × 20. The output from the
convolution layer goes through the rectified linear unit (ReLU)
function followed by the pooling layer, which employs a max
pooling process of 2 × 2 matrices. This process is repeated
several times to create the output and train the machine with
the inherent features of the image. The output of the pooling

layer is fed into a second convolution layer consisting of 16
convolution filters of size 10× 10. Similarly, after passing the
output through the ReLU function it undergoes the pooling
layer with a max pooling size of 2 × 2 matrices. Finally, it
is passed through the third round of the convolution layer
consisting of 32 convolution filters of size 5× 5 after, which
is processed by the ReLU function, and the pooling layer with
max pooling size of 2× 2 matrices. The max pooling concept
is demonstrated in Fig. 11.

The stride is the sliding window operation, which is used
in the convolution layer and in the max pooling operation
in which case the stride is 2 [13], [14]. Suppose n × n
convolution is performed, the stride represents the movement
by S elements with every step. If the stride is defined as 1 that
means the convolution layer will move with a sliding window
of 1 pixel and move every third pixel by skipping the second
pixel. Max pooling, shown in Fig. 11, is a down-sampling
process where it selects the maximum value from each view
[15], [16]. Since the IR camera images and spectrograms
contain sharp edges max pooling instead of average pooling
is used to extract the most important features such as edges.
The classifier network consists of a fully connected layer
comprised of 100 hidden nodes, which produce a Softmax
output that in turn is used for classifying the driver’s status.
The output layer of the DCNN represents the probability
distribution containing the probabilities that each class is
assigned in accordance with the input images. Using maximum
ratio combining by looking at the two gathered sensor data
once the algorithm detects a human in heavy smoke it will
send an alert to the user, e.g., a firefighter, if no human is
detected it will forward to the algorithm to continue to perform
the human detection on the new set of data received by the
sensors.

While building the DCNN model, there are a few important
inputs that affect the learning and validation accuracies. These
inputs are the number of dense layers (DL), layer sizes (LS),
and the number of convolution layers (CL).

To train our model for optimum results, we make use of two
functions; Function A and Function B for a simple explanation.
Function A is responsible for finding the best input arguments
by trying every different combination of the inputs and then
training a model on each variation of the inputs. For example,
if DL can be 0, 1, or 2 and LS can be 32, 64, or 128, Function
A will try to train 9 different combinations and record which
specific combination gave the best training accuracy results.

Next, we take the best input values, found in Function A,
and feed them into Function B. Function B is responsible for
training the final model. Function B will train the model using
an 80%− 20% split for training and validation. We train two
DCNN models to account for the two different categories of
input images, IR images, and spectrogram images. Overall we
have gathered and used 2,000 IR images and 2,000 spectro-
gram images from the radar, 500 images per classification
category per sensor. For each DCNN model, there are four
classifications for the input images: close, medium, far, and
no human.
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Fig. 10. Architecture of the DCNN algorithm implemented for image classification.

Fig. 11. Max pooling principle.

VI. EXPERIMENTAL RESULTS

Experiments were conducted in a two-car garage in which
an artificial smoke was first filled using a VIRHUCK fog
machine. The smoke thickness was so high that a human in
the smoke was not visible to the naked eye.

The testbed experimental setup is shown in Fig. 12. The
right slide shows the IR sensor as well as the radar sensor
used on the top shelf along with the fog machine at the bottom
self. The top right image shows an instance of how the artificial
smoke is filled inside the garage and the bottom right side is
when the smoke exits as the garage door is opened.

Fig. 12. Testbed experimental setup inside a garage with artificial smoke.

The fully integrated data acquisition system is shown in
Fig. 13. It is composed of the IR camera mounted on a 3D
printed stand and the HB100 radar sensor along with the radar
amplification circuit. All the sensor information is gathered
on the Raspberry Pi 4 micro-computer that does all the signal
processing for live detection of the human in heavy smoke

using the pre-trained deep learning modes discussed in Section
V.

Fig. 13. Fully connected data acquisition system.

Implementing machine learning for image classification
greatly reduces the time needed for decision-making in an
intense environment where every second counts. Image clas-
sification can be more than just a “yes” or “no” decision. The
DCNN that was implemented consisted of two models, each
with four labels of classification. To enlarge our data set we
used data augmentation, sample images of data augmentation
for the four categories are shown in Fig. 14. The actual two
models were trained using the larger data augmentation data
set. The data augmentation enlarged our data set from 2,000
images for each sensor to 14,000. The larger modified data set
showed an observed improvement in the validation accuracy
of both models.

When training the two DCNN models, overfitting of the
dataset was experienced whenever the number of epochs was
greater than fifteen. For this reason, the number of epochs was
limited to ten when training and 44 iterations per epoch were
used. This provided both models the IR sensor and the radar
sensor with about 98% validation accuracy with a validation
split of 80%− 20%, as shown in Figs. 15 and 16. The benefit
of using an IR camera along with the radar sensor is that the
IR sensor acts best when the human is not moving fast, e.g.,
stationary while the radar sensor provides the best results when
the human is in motion in a heavy smoke environment.
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Fig. 14. Data augmentation of our IR camera data set.

Fig. 15. Validation accuracy and loss plot of the IR model.

Fig. 16. Validation accuracy and loss plot of the spectrogram model.

VII. CONCLUSION

We developed an AI-based human detection scheme using
two unique sensing mechanisms an IR camera and a radar
sensor. The system is capable of real-time detection and
localizing humans and animals in deep smoke to improve the
situational awareness of firefighters on the scene. We make use
of data from a micro-Doppler sensor and an infrared camera
and train a deep convolutional neural network algorithm to
localize a human in dense smoke at Close, Medium, and Far
distances in real time. Experimental results reveal that the

proposed system can detect a human in heavy smoke with 98%
validation accuracy. A similar AI-based training procedure can
be carried out to detect animals in heavy smoke as well.
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