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Abstract: In this paper, we present a pedestrian detection and avoidance scheme utilizing multi-
sensor data collection and machine learning for intelligent transportation systems (ITSs). The system
integrates a video camera, an infrared (IR) camera, and a micro-Doppler radar for data acquisition and
training. A deep convolutional neural network (DCNN) is employed to process RGB and IR images.
The RGB dataset comprises 1200 images (600 with pedestrians and 600 without), while the IR dataset
includes 1000 images (500 with pedestrians and 500 without), 85% of which were captured at night.
Two distinct DCNNs were trained using these datasets, achieving a validation accuracy of 99.6%
with the RGB camera and 97.3% with the IR camera. The radar sensor determines the pedestrian’s
range and direction of travel. Experimental evaluations conducted in a vehicle demonstrated that
the multi-sensor detection scheme effectively triggers a warning signal to a vibrating motor on the
steering wheel and displays a warning message on the passenger’s touchscreen computer when a
pedestrian is detected in potential danger. This system operates efficiently both during the day and
at night.

Keywords: machine learning; pedestrian detection; accident prevention; intelligent transportation
systems

1. Introduction

Pedestrian fatalities in traffic crashes in the United States highlight a critical issue,
with one pedestrian killed every 88 min, totaling over 16 daily and nearly 115 weekly. In
the first nine months of 2020, motor vehicle traffic fatalities rose by 4.5%, with an estimated
28,190 deaths [1]. In 2019, over 6500 pedestrians were killed, the highest annual number
recorded, with more than 100,000 injuries [2]. Notably, 75% of pedestrian fatalities occurred
in low-light conditions. California saw around 430 pedestrian deaths in the first half of
2018, with a 40% increase in pedestrian fatalities in the first half of 2021 compared to
2020 [3,4]. Research suggests that automatic emergency braking systems with pedestrian
detection could prevent up to 5000 vehicle-pedestrian crashes annually, including 810 fatal
collisions [5,6]. Advancements in thermal infrared (IR) cameras show potential for improv-
ing pedestrian safety. However, current studies on pedestrian detection and avoidance,
including [7–11], are in the early stages and lack the integration of multiple sensors with
advanced machine learning (ML) for real-time detection and avoidance. Our research
addresses this gap by developing AI-based tools using state-of-the-art ML techniques and
sensor data fusion, focusing on nighttime detection. By combining data from thermal
IR, radar, and visible cameras with advanced ML algorithms, our system aims to detect
and prevent pedestrian collisions in real time under various conditions. This integrated
mechanism, suitable for both day and night, could also be used in autonomous vehicles.
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Related Work: In the existing body of research, various methodologies have been
proposed for different aspects of pedestrian detection and safety systems. Al Sobbahi and
Tekli [12] conducted comparative studies on deep-learning models used for low-light image
enhancement. They presented a comparative analysis of the impact on object detection and
classification performance when image enhancement is applied. Xiao et al. [13] proposed
two-stage and single-stage pedestrian detection frameworks. In the two-stage scheme,
approximate valid regional candidates were first generated and then refined through
another sub-network. The single-stage scheme, in contrast, omitted the regional candidates
and directly regressed the predefined areas to achieve computational efficiency. These
two frameworks were built on different network models. Gonzales et al. [14] assessed the
accuracy gain of various pedestrian models when trained with images in the far infrared
spectrum. Specifically, they compared detection accuracy on test images recorded during
the day and night, training on plain color images, infrared images, or both combined.
Lim et al. in [9] focused on discriminating stationary targets in traffic monitoring radar
systems, although their approach did not center explicitly on pedestrian detection. Cao
et al. in [10] introduced a hierarchical reinforcement and imitation learning (H-ReIL)
method, integrating imitation learning (IL) for discrete driving modes and reinforcement
learning (RL) for efficient mode-switching strategies. Jain et al. [15] developed a multimodal
pedestrian detection system for crowded scenes with reduced visibility due to daytime
or weather conditions. They used heuristics and a deep convolutional neural network
technique. Their neural network model incorporates a long short-term memory (LSTM)
architecture, with hyperparameters adjusted using the shark smell optimization algorithm.
Fukui et al. [16] proposed a vision-based pedestrian detection framework based on a CNN
that achieves high accuracy across various fields. The authors introduced random dropout
and an ensemble inference network to the training and classification processes to improve
detection accuracy. Luo et al. in [17] proposed a pedestrian detection scheme utilizing active
and passive night vision in different regions of the electromagnetic spectrum, discussing
the capabilities of each approach. Similarly, Han and Song in [18] presented a night-vision
pedestrian detection system for automatic emergency braking (AEB) using near-infrared
cameras and specific algorithms for pedestrian discrimination. Fu in [19] proposed a
pedestrian detection method based on the “three-frame difference method,” introducing
modifications to enhance system accuracy. We summarize and compare our contribution
with existing studies in Table 1.

Despite the breadth of these studies, none of them ventured into actual implementation
or employed a fusion of multi-sensor data coupled with machine learning techniques
specifically for pedestrian detection and driver alert systems. This research aims to bridge
this gap by focusing on the practical implementation of a comprehensive system that
integrates data from various sensors, leveraging advanced machine learning to detect
pedestrians and provide real-time alerts to drivers when pedestrians are detected.

The core innovation of this research lies in the fusion of three distinct sensors—a
thermal infrared camera, a radar sensor, and a visible camera—augmented by advanced
machine learning (ML) techniques for pedestrian detection and avoidance. This exploration
aims to pioneer AI-driven tools for drivers, potentially saving lives. Our research focuses
on optimizing pedestrian detection, particularly in low-light conditions, harnessing the
information gleaned from these sensors and advanced ML algorithms in real time. By
leveraging this multidimensional data, our system can make informed decisions across
diverse road conditions, day or night. The envisaged system could seamlessly integrate
into smart vehicle setups, offering real-time pedestrian detection and alert mechanisms.
It notifies drivers through wheel vibration and dashboard messages to prevent potential
collisions. With live experimentation conducted in a vehicle setting, our system achieved
an impressive average accuracy of 98%. Utilizing a deep learning algorithm, it effectively
identifies pedestrian presence, both day and night, ensuring timely alerts within a real-time
monitoring framework.
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The rest of the paper is organized as follows: In Section 2, we describe the sys-
tem overview, followed by pedestrian detection using a video camera, IR camera, and a
radar sensor in Sections 3–5, respectively. After illustrating the experimentation results in
Section 6, we draw the main conclusions in Section 7.

Table 1. Gap analysis and contributions of this work with respect to the existing studies in the
literature.

Article Features Pedestrian
Detection Prototype Using RGB,

IR, Radar
Data

Fusion
Low-Light
Condition

Lim et al. [9]
Discriminating stational

targets in traffic monitoring
radar systems.

Radar

Cao et al. [10]
Hierarchical reinforcement

and imitation learning
(H-ReIL).

RGB

Sobbahi and Tekli
[12]

Low-light image enhancement
and object detection. RGB ✓

Xiao et al. [13]
Concentrates on occlusion and

multi-scale pedestrian
identification challenges.

✓ RGB

Gonzales et al. [14] Assess the accuracy gain of
various pedestrian models. ✓

RGB,
Far IR ✓

Jain et al. [15] Multimodal pedestrian
detection for crowded scenes. ✓ RGB ✓

Fukui et al. [16]
Vision-based pedestrian

detection framework based
on CNN.

✓ RGB ✓

Luo et al. [17]
Pedestrian detection utilizing

active and passive
night vision.

✓ Near IR ✓

Han and Song [18]

Night-vision pedestrian
detection system for automatic

emergency breaking via
infrared cameras.

✓ Near IR ✓

Fu [19] Pedestrian detection based on
three-frame difference method. ✓ RGB

This article

Thermal, visible image and
radar fusion and deep

learning techniques for
low-light

pedestrian detection.

✓ ✓
RGB, IR,

Radar ✓ ✓

2. System Overview
2.1. System Design

This system serves as an alert mechanism for drivers when a pedestrian is at risk while
crossing the street. It integrates machine learning with a video camera, infrared (IR) camera,
and radar sensor to assess road conditions accurately and identify nearby pedestrians.
Positioned in the vehicle, the three sensors concurrently scan the road ahead, capturing
diverse data types. The wide-view video and IR cameras capture images, while the radar
sensor assesses the pedestrian’s distance, motion direction, and speed. Once a pedestrian is
identified in the images, a computer script automatically crops and formats these images to
train respective deep convolutional neural network models—a machine learning algorithm.
Trained using labeled data from RGB and IR camera images alongside micro-Doppler
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signals, these models predict pedestrian behavior. They operate on a Raspberry Pi paired
with a Coral USB Accelerator to expedite real-time processing. Over a 60-second period,
continuous detections from all three sensors accumulate. These sensor-derived prediction
models are relayed to the driver in real time through the touchscreen display. If the system
detects a potential pedestrian hazard, it activates a vibration motor integrated with the
steering wheel, promptly alerting the driver and mitigating the risk of collision. Figure 1
illustrates the hardware setup, depicting the sensors capturing images and radar signals,
the pedestrian detection algorithm in action, and the subsequent driver alert through a
warning message and steering wheel vibration.
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Figure 1. Block diagram of the pedestrian detection hardware design.

Figure 2 presents the pedestrian detection software flow diagram, outlining the process
from sensor data acquisition to real-time pedestrian detection. Initially, data from the
RGB and FLIR cameras are channeled into a deep convolutional neural network (DCCN)
architecture, trained using TensorFlow Lite—an open-source framework for on-device deep
learning inference. Once the models are trained, they can be deployed onto an embedded
computer, facilitating real-time pedestrian detection. The continuously gathered real-
time sensor data are processed through these pre-trained models, consistently assessing
for pedestrian presence. If a pedestrian is identified, the system promptly alerts the
driver. Otherwise, it continues data collection and model testing in subsequent cycles.
Key equipment includes a video camera, FLIR IR camera, radar sensor, micro-computer,
vehicle, and an alert system. The alert system incorporates a vibration motor connected
to the steering wheel to notify the driver. The machine learning model is initially trained
in MATLAB and later integrated into Python for use with TensorFlow. Sensor placement
involves mounting some inside and others outside the vehicle to optimize data collection.
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2.2. Multi-Sensor Data Fusion Algorithm

To enhance the accuracy of pedestrian detection, various fusion methods can be
employed, including input fusion, early fusion, mid-fusion, late fusion, and a classifier
output ensemble. Information fusion is performed before feeding the inputs to the model.
Early-, mid-, and late-stage fusion occurs at the initial, intermediate, and fully connected
layers of the neural network, respectively. Additionally, classifier ensemble methods
offer several approaches to combining classifier outputs. Classifier outputs can be either
continuous values or labels. Let us denote the classifier label output as yn(x), representing
the decision of the n-th classifier on the test samples x, n = 1, . . . , N, and l is the number
of possible labels. Majority voting is a common scheme where the combined decision is the
label predicted by the majority of classifiers. This can be expressed as the following:

ŷ(x) = argmax
yl∈Ω

∑
n

g(y n(x), yl), (1)

where g() is an indicator is the indicator function that equals 1 if yn(x) = yl and 0 otherwise.
Another scheme, called unanimity voting, requires all classifiers to agree on the label for
a combined decision to be made; otherwise, the input x is rejected. In scenarios where
classifiers within the ensemble have varying levels of accuracy, weighted majority voting
can be used to improve the final decision. In this method, each classifier is assigned a
weight based on its accuracy, and these weights influence the final decision. The combined
decision is the label that receives the highest weighted vote. Let us denote the weight of
the n-th classifier as wn. The weighted majority voting can be expressed as the following:

ŷ(x) = argmax
yl∈Ω

∑n wng(y n(x), yl). (2)

This method takes into account the different accuracies of the classifiers, aiming to
enhance the overall performance of the ensemble.

Each classifier’s output is weighted proportionally to its accuracy, with wn being the
assigned weight. This weight can be either fixed or dynamically determined based on
the specific input data. One non-linear combination algorithm is the Borda count, which
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is based on ranking. In this method, each classifier ranks the classes according to their
likelihood of being correct. The combined decision is made by summing the accumulated
scores for each label.

In the Borda count method, if there are b possible labels, a classifier assigns a rank r
(with 1 being the highest rank and b being the lowest) to each label. The scores are then
accumulated across all classifiers. The final decision is the label with the highest total score.

In cases where classifier outputs are continuous values, voting approaches may not
fully exploit all available information. Instead, mathematical combination functions can
be utilized to integrate these continuous outputs more effectively. Commonly employed
functions include the following:

Averaging: This method calculates the average of the continuous outputs from all
classifiers. The final decision is based on the average value:

ŷ(x) =
1
N

N

∑
n=1

yn(x), (3)

Weighted Averaging: Similar to simple averaging, but each classifier’s output is
weighted according to its accuracy:

ŷ(x) =

N
∑

n=1
wnyn(x)

N
∑

n=1
wn

, (4)

where wn is the weight assigned to the n-th classifier.
Product Rule: This method multiplies the continuous outputs of all classifiers. It is

useful when the outputs represent probabilities:

ŷ(x) = P(y = yl |x) =
N

∏
n=1

Pn(y = yl |x). (5)

Median: The median of the continuous outputs from all classifiers is used as the final
decision. This approach is robust to outliers:

ŷ(x) = median{n=1,...,N}yn(x). (6)

Maximum/Minimum: The maximum or minimum value among the continuous
outputs can be used, depending on the context of the problem (e.g., risk assessment,
anomaly detection):

ŷ(x) = max(y1(x), y2(x), . . . , yN(x)), (7)

or
ŷ(x) = min(y1(x), y2(x), . . . , yN(x)). (8)

Note that these combiners are called non-trainable, because once the individual clas-
sifiers are trained, their outputs can be fused to produce an ensemble decision, without
any further training. On the other hand, trainable combiners are Naive Bayes, weighted
majority voting.

The proposed ensemble comprises three individual DCCN models, each trained with
three input channels as described in Sections 3–5. Each CNN model functions as an
individual learner, providing a classification score c (i.e., a probability) for each class. Here,
c = 0 represents the non-pedestrian class, and c = 1 represents the pedestrian class. To
combine the probabilities from the three CNN models, we employ a weighted average
scheme. Therefore, the multi-sensor data fusion algorithm employs a weighted average
approach to enhance the accuracy and reliability of pedestrian detection. The algorithm
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integrates data from multiple sensors, assigning weights based on each sensor’s reliability
under current conditions. Specifically:

Nighttime Weights: A weight of 0.7 is heuristically assigned to thermal IR data and
0.3 to visible-light camera data. This emphasis on thermal IR data is due to its superior
performance in low-light conditions.

Daytime Weights: A weight of 0.7 is heuristically assigned to visible-light camera
data and 0.3 to thermal IR data, reflecting the better performance of visible-light cameras in
well-lit conditions.

This approach ensures that the most reliable sensor data are given higher importance,
with thermal IR prioritized at night and visible-light cameras during the day. This weighting
strategy is based on our analysis, which indicates that thermal IR cameras excel in night
detection, while visible-light cameras are more effective during the day.

2.3. Deep Convolutional Neural Network Design

In this project, a deep convolutional neural network (DCNN) was developed for
image classification tasks using both RGB and IR camera inputs. The process begins with
manually cropping the images to 100 × 120 pixels. The cropped images are processed
through a feature extraction network, starting with an initial convolution layer using
eight 20 × 20-pixel filters. The output is passed through a rectified linear unit (ReLU)
function and a 2 × 2 max pooling layer [20,21]. This process is repeated with a second
convolution layer of 16 filters (10 × 10 pixels), followed by ReLU and max pooling and a
third convolution layer of 32 filters (5 × 5 pixels), again followed by ReLU and max pooling.
In both convolution and max pooling, the stride indicates the sliding window movement.
A stride of 1 means the window moves one pixel at a time, extracting maximum values to
preserve crucial features like edges. The classifier network includes a fully connected layer
with 100 hidden nodes, producing a softmax output to classify the driver’s status [22–24].
The DCNN’s final output layer provides a probability distribution for each class based on
the input images as shown in Figure 3. The initial learning rate is set to 0.001. Learning rate
decay is applied, reducing the learning rate by a factor of 0.1 every 10 epochs to stabilize
training. A batch size of 32 is used to balance memory usage and training speed. The Adam
optimizer is chosen for its adaptive learning rate capabilities, which help in achieving faster
convergence. Categorical cross-entropy is used to handle the classification task effectively.

J. Sens. Actuator Netw. 2024, 13, x FOR PEER REVIEW 7 of 21 
 

 

The proposed ensemble comprises three individual DCCN models, each trained with 
three input channels as described in Sections 3, 4, and 5. Each CNN model functions as an 
individual learner, providing a classification score 𝑐 (i.e., a probability) for each class. 
Here, 𝑐 = 0 represents the non-pedestrian class, and 𝑐 = 1 represents the pedestrian class. 
To combine the probabilities from the three CNN models, we employ a weighted average 
scheme. Therefore, the multi-sensor data fusion algorithm employs a weighted average 
approach to enhance the accuracy and reliability of pedestrian detection. The algorithm 
integrates data from multiple sensors, assigning weights based on each sensor’s reliability 
under current conditions. Specifically: 

Nighttime Weights: A weight of 0.7 is heuristically assigned to thermal IR data and 
0.3 to visible-light camera data. This emphasis on thermal IR data is due to its superior 
performance in low-light conditions. 

Daytime Weights: A weight of 0.7 is heuristically assigned to visible-light camera 
data and 0.3 to thermal IR data, reflecting the better performance of visible-light cameras 
in well-lit conditions. 

This approach ensures that the most reliable sensor data are given higher importance, 
with thermal IR prioritized at night and visible-light cameras during the day. This 
weighting strategy is based on our analysis, which indicates that thermal IR cameras excel 
in night detection, while visible-light cameras are more effective during the day. 

2.3. Deep Convolutional Neural Network Design 
In this project, a deep convolutional neural network (DCNN) was developed for im-

age classification tasks using both RGB and IR camera inputs. The process begins with 
manually cropping the images to 100 × 120 pixels. The cropped images are processed 
through a feature extraction network, starting with an initial convolution layer using eight 
20 × 20-pixel filters. The output is passed through a rectified linear unit (ReLU) function 
and a 2 × 2 max pooling layer [20,21]. This process is repeated with a second convolution 
layer of 16 filters (10 × 10 pixels), followed by ReLU and max pooling and a third convo-
lution layer of 32 filters (5 × 5 pixels), again followed by ReLU and max pooling. In both 
convolution and max pooling, the stride indicates the sliding window movement. A stride 
of 1 means the window moves one pixel at a time, extracting maximum values to preserve 
crucial features like edges. The classifier network includes a fully connected layer with 
100 hidden nodes, producing a softmax output to classify the driver’s status [22–24]. The 
DCNN’s final output layer provides a probability distribution for each class based on the 
input images as shown in Figure 3. The initial learning rate is set to 0.001. Learning rate 
decay is applied, reducing the learning rate by a factor of 0.1 every 10 epochs to stabilize 
training. A batch size of 32 is used to balance memory usage and training speed. The 
Adam optimizer is chosen for its adaptive learning rate capabilities, which help in achiev-
ing faster convergence. Categorical cross-entropy is used to handle the classification task 
effectively. 

 
Figure 3. Convolutional neural network architecture for the IR camera image input. 

Upon detecting a pedestrian via a maximum ratio combining the data from the three 
sensors, the algorithm alerts the driver. If no pedestrian is detected, the system continues 

Figure 3. Convolutional neural network architecture for the IR camera image input.

Upon detecting a pedestrian via a maximum ratio combining the data from the three
sensors, the algorithm alerts the driver. If no pedestrian is detected, the system continues
capturing new images and radar data for further analysis. To ensure the system’s ability
to capture rapid changes in biometric data, the deep convolutional neural network model
was adapted for the Raspberry Pi with the Coral USB Accelerator, as depicted in Figure 4.
The model was first converted into a TensorFlow Lite model, optimized for faster inference
times and efficient functioning on low-power devices with limited memory. The converted
TensorFlow Lite model, initially represented in 32-bit floating-point numbers, underwent
post-training quantization to obtain 8-bit fixed-point numbers essential for Edge TPU
compatibility. Employing full integer quantization, the model’s size decreased by four
times, accelerating inference times by a factor of three. The final step involved compiling
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the quantized TensorFlow Lite model using the Edge TPU compiler. Several models were
compiled to further enhance performance in terms of model accuracy.
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3. Pedestrian Detection Using a Video Camera
3.1. RGB Camera

Data was collected using an ELP RGB camera, specifically the USB4K02AF-KL100W
model. An RGB camera captures images that mirror standard human vision by utilizing
red, blue, and green colors. Renowned for its exceptional clarity, the USB4K02AF-KL100W
camera boasts a 4K resolution, positioning itself among the market’s top performers.
Equipped with an array of LED lights, this camera automatically adjusts brightness levels
to ensure optimal image capture.

3.2. Data Collection Using the RGB Camera

The RGB camera illustrated in Figure 5 was instrumental in compiling the dataset
for configuring a customized machine-learning model aimed at detecting individuals as
the model ran. Specifically utilized in daylight scenarios, this camera served a distinct
purpose, while the FLIR IR camera, as detailed in Section 4, was responsible for night-
time data collection. Images were captured at various distances, examples of which are
showcased in Figure 6. Each image featuring a pedestrian was annotated with bounding
boxes, precisely pinpointing their location. This annotation method significantly aided
the DCNN algorithm in accurately detecting and classifying pedestrians in the images. A
total of 1200 images were gathered, equally divided into 600 images with pedestrians and
600 without. Furthermore, an additional 800 images were sourced from the Teledyne FLIR
Thermal Dataset [25], where half contained pedestrians and the other half did not. This
accumulation of 2000 images was employed to train and experiment with our ML model.
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The acquired data were instrumental in constructing a specialized machine-learning
model utilizing a pre-trained network known as Squeezenet. The evaluation of this trained
model demonstrated its high accuracy, as shown by the loss and accuracy data in Figure 7.
The loss graph signifies the disparity between the model’s prediction and the actual value,
which needs to be minimized for optimal accuracy. Meanwhile, the accuracy graph as-
sesses the model’s precision by comparing it against the test images utilized for valida-
tion. We have also plotted the confusion matrix score for the training results, as shown
in Figure 8. MATLAB facilitated the collection of accurate data using the Squeezenet
pre-trained network, leveraging standard camera images from the FLIR dataset [26] to
differentiate between person images. The camera used to capture those images is a Tele-
dyne FLIR Blackfly S BFS-U3-51S5C (IMX250) camera and a 52.8◦ HFOV Edmund Optics
lens. The training and development of this custom model were conducted on a separate
computer before transferring it to the Raspberry Pi 4 as a TFLite model, enabling real-time
functionality testing.
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Note a loss metric (or loss function) quantifies the difference between the predicted
values by a model and the actual values. It measures how well or poorly a model is
performing. In our case, cross-entropy loss is used for classification, which is defined as

L = − 1
n

n

∑
i=1

C

∑
c=1

yi,clog(ŷi,c) (9)

where ŷi,c is a binary indicator (0 or 1) if class label c is the correct classification for observa-
tion i, ŷi,c is the predicted probability of observation i being in class c, n is the number of
observations, and C is the number of classes.

Accuracy is a metric used to evaluate the performance of a classification model. It is
the ratio of correctly predicted instances to the total instances.

Accuracy =
NumberofCorrectPredictions

TotalNumberofPredictions
=

TP + TN
TP + TN + FP + FN

(10)

where TP is the True Positive, TN is the True Negative, FP is the False Positive, and FN is
the False Negative.

The F1 score, also known as the F1 measure or F1 value, is a metric used to evaluate
the performance of a classification model. It considers both the precision and recall of the
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model to provide a balanced assessment of its effectiveness. The formula for calculating
the F1 score is as follows:

F1 = 2 × Precision × Recall
Precision + Recall

(11)

Precision is the ratio of true positive (TP) prediction to the total number of positive
predictions, calculated as TP/(TP + FP).

Recall, also known as sensitivity or true positive rate, is the ratio of true positive
predictions to the total number of actual positive instances, calculated as TP/(TP + FN).

3.3. Performance Results

After meticulously curating the dataset, the deep convolutional neural network un-
derwent training, reaching an impressive validation accuracy of 99.6%, as illustrated in
Figure 7. Notably, the validation accuracy begins to stabilize after nine epochs, signifying
that the model has reached its optimal performance threshold. In this context, an epoch
refers to a full cycle where the entire training dataset is passed forward and backward
through the neural network once. Given the limitations of the training dataset, multiple
epochs are typically employed, allowing the learning algorithm to iteratively minimize
the model’s error. The validation accuracy serves as an indicator of the model’s practical
performance when presented with new samples. On the other hand, the loss metric of the
model depicts its responsiveness to training after each iteration or epoch. The loss metric
essentially drives the model toward optimization, ensuring that subsequent predictions
become increasingly accurate. Ideally, the loss metric should consistently decrease during
training, indicating that the model’s predictive capabilities are improving. In Figure 8, the
confusion matrix results for the RGB camera are presented. The high true positive and true
negative rates, coupled with the low false positive and false negative rates, indicate that
the model performs effectively in detecting and classifying the data accurately.

3.4. Limitations

The experimental setup had inherent limitations owing to the hardware utilized.
Notably, the camera’s resolution constraints resulted in reduced accuracy when detecting
pedestrians at greater distances. To overcome this limitation, upgrading to a higher-
resolution camera with autofocus capabilities could significantly enhance image clarity at
longer distances, thereby improving the accuracy of pedestrian detection.

4. Pedestrian Detection Using an IR Camera
4.1. Infrared

In this project, the camera utilizes the long-wave infrared spectrum, operating within
the frequencies of 8 µm–14 µm. This range falls within the broader electromagnetic spec-
trum of infrared, spanning frequencies between 300 GHz–430 THz and wavelengths of
700 nm–1 mm [15].

4.2. Data Collection Using Infrared Camera

Images were collected through the FLIR Lepton 3.5 camera, a compact device smaller
than a dime, as depicted in Figure 9. Figure 10 showcases various image samples captured
using this camera, highlighting both day and night conditions. These images were then
meticulously labeled utilizing LabelImg annotation software [27], an intuitive graphical tool
designed in Python with a Qt-based graphical user interface. This software facilitated the
identification of individuals within the training and testing sets, as illustrated in Figure 11,
which places bounding boxes, precisely pinpointing their location. Notably, all images
employed in this study were directly sourced from the camera, without relying on any
pre-existing datasets. Approximately 85% of the images were taken during nighttime,
while the remainder were captured in daytime settings. The DCNN model was trained
using the SSD MobileNet V2 FPNLite pre-trained network. This network was selected
for its accelerated processing and its near-native resolution compatibility with the FLIR
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camera, minimizing image distortions. While various networks were explored, MobileNet
emerged as the optimal choice for the IR dataset, yielding the most promising outcomes.
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4.3. Performance Results

Once the dataset curation was completed, the deep convolutional neural network
underwent training, reaching a validation accuracy of 97.26%, as depicted in Figure 12.
Notably, the validation accuracy began to level off after four epochs of training. During
testing, the model exhibited successful detection of all human-present images within a
15-meter range of the vehicle. However, accuracy experienced a swift decline beyond
this range, particularly when pedestrians exceeded 25 m from the IR camera, leading to
algorithmic degradation. In Figure 13, the confusion matrix results for the IR camera are
presented. The high true positive and true negative rates, coupled with the low false
positive and false negative rates, indicate that the model performs effectively in detecting
and classifying the data accurately.
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4.4. Limitations

The FLIR camera’s limitation lies in its modest resolution of 160 × 120 pixels. This
limited resolution results in poorer image quality, making it challenging for the training
network to discern human features for accurate recognition. This becomes particularly
pronounced when pedestrians are distant, as they occupy fewer pixels and often appear
as bright rectangles. This notably affects the model’s performance when detecting pedes-
trians at longer distances. To overcome this limitation in future iterations, employing a
higher-resolution IR camera would enhance the detection of pedestrians, especially at
extended distances.

5. Pedestrian Detection Using a Micro-Doppler Radar
5.1. Micro-Doppler Radar Setup

The radar data were captured using OmniPreSense’s OPS243-C sensor, shown in
Figure 14, a comprehensive short-range radar (SRR) solution offering motion detection,
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speed, direction, and range reporting (referenced in Figure 15). Signal processing occurs
onboard the sensor, and an easy-to-use application programming interface (API) delivers
processed data. It allows adaptable control over reporting formats, sample rates, and
module power levels. The sensor gathers information on pedestrian speed, direction, and
distance from the vehicle, detecting objects within a range of up to 60 m. Its applications
span security, traffic monitoring, drone collision avoidance, robotics, and Internet of Things
(IoT) sensor uses. The micro-Doppler radar signals captured were subsequently converted
into spectrograms, providing a visual representation of frequency variations in the received
signal over time.
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Figure 15. OmiPreSence OPS24-C FMCW Doppler detection range and power pattern.

The sensor offers various features, including a detection range from 1 m to 100 m,
speed reporting up to 348 mph, range reporting up to 60 m, and a narrow 20-degree
beam width (−3 dB), as depicted in Figure 15b’s power pattern. Operating within the
24 GHz–24.25 GHz range on the industrial, scientific, and medical (ISM) band, the OPS243
sensor transmits data via USB, UART, RS-232, or Wi-Fi interfaces. This facilitates easy
connections to embedded processors (such as Arduino, Raspberry Pi, or PCs) or direct
cloud connectivity via Wi-Fi.

In Figure 15, the radar sensor displays its detection range capabilities on the left, with
the power pattern depicted on the right. The power pattern illustrates a narrow 20-degree
beam width at −3 dB power. This radar sensor collects data in the form of spectrograms,
serving as an input for the DCNN algorithm to predict the driver’s status. In Figure 16’s
spectrogram plot, the vertical axis represents Doppler frequency variations in hertz, while
the horizontal axis denotes time in seconds. The redder areas signify increased motion
activity, contrasting with the bluer tones indicating minimal variations or motion in front
of the radar sensor. Figure 16 portrays scenarios with no pedestrian detected (left) and a
pedestrian detected at 20 m (right). In contrast, Figure 17 showcases a pedestrian detected
at 10 m (left) and at 5 m (right). Notably, Figure 17’s right side exhibits more Doppler
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frequency variations due to the pedestrian’s closer proximity to the vehicle. In contrast,
Figure 16 (right) shows fewer perturbations when the pedestrian is farther away at 20 m.
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Figure 17. Pedestrian detected (a) at 10 m, (b) 5 m.

5.2. Experimental Results Using the Radar Sensor

The OPS243-C FMCW Micro Doppler Radar not only measures the speed of moving
objects but also their distance from the Doppler. It operates using two antennas: one
transmits an FMCW signal while the other receives the echoed signal. Configured via its
onboard API, the OPS243-C FMCW Doppler collected data via a Python script executed
on a Raspberry Pi 4. These data aimed to detect human proximity to the vehicle within a
range of approximately 25 m, predicting potential accidents using cameras. However, the
Micro Doppler’s limitations hindered its effectiveness, only detecting human signatures
within tens of meters, thwarting the intended use.

Initially intended for spectrogram generation feeding a convolutional neural network,
the Doppler’s constraints led to merely 2-second spectrogram windows—insufficient for
the detection system’s response time. Instead, used as a range finder, the radar instantly
determined range depths, detecting objects within 10 to 15 m. Objects outside this range
were disregarded.

Upon detection within this range, the radar signaled machine learning algorithms to
activate the RGB and FLIR cameras. These sensors collectively evaluated detection scores
to determine potential accidents with pedestrians. The process involved data gathering,
radar-flag setting upon object detection, calculation of camera detection scores with specific
weights, and subsequent evaluation. If the combined weights exceeded 50%, a signal would
activate the vibrating motor to alert the driver of a potential pedestrian-related accident.

In Figure 18, the pedestrian signature is detected within the range identified for
humans. Range measurements served as supplementary data input for the algorithm,
offering precise distance information between the pedestrian and the vehicle. During the



J. Sens. Actuator Netw. 2024, 13, 34 16 of 21

actual experimental deployment, these distance plot readings replaced spectrograms due
to their real-time capability to provide immediate measurements.
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Figure 18. Pedestrian range detection at different frame instances using the micro-Doppler sensor.

In Figure 19, the spectrogram on the left illustrates a vehicle approaching a human at
low speeds (1–5 mph), evident from the concavity pointing towards the left. This pattern
was noted during vehicle approach at lower speeds. Similarly, the spectrogram on the
right depicts a vehicle approaching a human at medium speeds (5–10 mph), displaying a
concavity pointing to the left, akin to the phenomenon observed at lower speeds. However,
the spectrogram for medium speeds captures less information due to the limited duration
it covers within the short distance span (0.5 m to ~7.5 m).

J. Sens. Actuator Netw. 2024, 13, x FOR PEER REVIEW 16 of 21 
 

 

would activate the vibrating motor to alert the driver of a potential pedestrian-related 
accident. 

In Figure 18, the pedestrian signature is detected within the range identified for hu-
mans. Range measurements served as supplementary data input for the algorithm, offer-
ing precise distance information between the pedestrian and the vehicle. During the actual 
experimental deployment, these distance plot readings replaced spectrograms due to their 
real-time capability to provide immediate measurements. 

 
Figure 18. Pedestrian range detection at different frame instances using the micro-Doppler sensor. 

In Figure 19, the spectrogram on the left illustrates a vehicle approaching a human at 
low speeds (1–5 mph), evident from the concavity pointing towards the left. This pattern 
was noted during vehicle approach at lower speeds. Similarly, the spectrogram on the 
right depicts a vehicle approaching a human at medium speeds (5–10 mph), displaying a 
concavity pointing to the left, akin to the phenomenon observed at lower speeds. How-
ever, the spectrogram for medium speeds captures less information due to the limited 
duration it covers within the short distance span (0.5 m to ~7.5 m). 

  
(a) (b) 

Figure 19. Spectrograms represent the following: (a) a vehicle approaching a pedestrian at low speed 
(1–5 mph), (b) a vehicle approaching another vehicle at medium speed (5–10 mph). 

In Figure 20, the left spectrogram illustrates a vehicle approaching another vehicle 
(10–15 mph), displaying a concavity pointing left—similar to the pattern observed when 
vehicles approached humans at low speeds. This spectrogram captures more information 
than the human-focused ones because the micro-Doppler effectively records vehicle 
movement within ~20 m. On the right, the spectrogram depicts a vehicle moving away 
from the target vehicle starting from rest (0–15 mph), evidenced by the concavity pointing 
right. This concavity pattern emerges when objects move away from the radar sensor. This 

Figure 19. Spectrograms represent the following: (a) a vehicle approaching a pedestrian at low speed
(1–5 mph), (b) a vehicle approaching another vehicle at medium speed (5–10 mph).

In Figure 20, the left spectrogram illustrates a vehicle approaching another vehicle
(10–15 mph), displaying a concavity pointing left—similar to the pattern observed when
vehicles approached humans at low speeds. This spectrogram captures more informa-
tion than the human-focused ones because the micro-Doppler effectively records vehicle
movement within ~20 m. On the right, the spectrogram depicts a vehicle moving away
from the target vehicle starting from rest (0–15 mph), evidenced by the concavity pointing
right. This concavity pattern emerges when objects move away from the radar sensor. This
spectrogram holds more data compared to the human-focused ones, as the radar sensor
effectively captures vehicle movements within ~20 m.
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6. Prototype Experimentation

In this section, we assess the effectiveness of the pedestrian detection scheme specifi-
cally designed for vehicle testing.

6.1. System Setup in a Vehicle

The experimental setup for the in-vehicle test includes the utilization of the Google
Coral USB Accelerator, integrating an Edge TPU coprocessor into the system. This addition
allows high-speed machine learning inferencing on various systems by simply connecting
it to a USB port. This on-device ML processing minimizes latency, enhances data privacy,
and eliminates the need for a continuous internet connection.

Furthermore, the setup involves the Raspberry Pi 4 Model B, employed for processing
real-time data while incorporating the machine learning model. Key features encompass a
high-performance 64-bit quad-core processor, dual-display support at resolutions up to 4K
through micro-HDMI ports, hardware video decoding at up to 4Kp60, up to 4 GB of RAM,
dual-band 2.4/5.0 GHz wireless LAN, Bluetooth 5.0, Gigabit Ethernet, and USB 3.0.

Figure 21 displays the touchscreen display affixed to the car’s dashboard, offering
real-time information to the driver regarding road conditions and pedestrian detection
through three sensors. It indicates the presence or absence of pedestrians and provides
distance measurements obtained from the radar sensor. Additionally, the system includes a
warning mechanism; upon detecting a pedestrian, it flashes red and activates the steering
wheel motor to alert the driver.
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6.2. Testbed Experimentation in a Vehicle

The pedestrian detection system was implemented in a vehicle, as demonstrated in
Figures 22 and 23. A motor was affixed to the steering wheel to promptly alert the driver
upon detecting a pedestrian on the road who might be at risk.
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Figure 23. System setup on a vehicle.

A live demonstration conducted in a vehicle on a street showcased the system’s ability
to detect pedestrians, as depicted in Figures 24 and 25. The developed system exhibited
robust performance, achieving over 97% accuracy in pedestrian detection during both
daytime and nighttime conditions.
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7. Conclusions

This research project implements a pedestrian detection and avoidance scheme utiliz-
ing multi-sensor data collection and machine learning for intelligent transportation systems
(ITSs). The system incorporates a video camera, an infrared camera, and a micro-Doppler
radar for data gathering and model training. A deep convolutional neural network (DCNN)
trains on both RGB and IR camera images, totaling 1200 RGB images (600 with pedestrians)
and 1000 IR images (500 with pedestrians, 500 without), with 85% taken during nighttime.

Following dataset curation, two distinct DCNNs were trained. The RGB camera
achieved a 99.6% validation accuracy in detecting pedestrians, while the IR camera, pre-
dominantly trained on nighttime images, achieved 97.3% accuracy. The radar sensor
determined the pedestrian range and travel direction. Vehicle-based experiments con-
firmed that upon detecting a potentially endangered pedestrian, the multi-sensor scheme
activated a signal to the wheel’s vibrating motor and displayed a warning message on the
passenger’s touchscreen. This system functions effectively in both day and night conditions.
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