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Abstract—Radio frequency (RF) fingerprinting is considered
to be a promising security solution for wireless communications
at the physical layer. RF fingerprinting is still in its infancy,
and much research is needed to further improve the detection
capabilities. To address this problem, in this paper, we propose
utilizing software-defined radios (SDRs), which have proven
to be extremely beneficial to the RF research community. We
demonstrate the capability of RF fingerprinting by identify-
ing the transmit radios that are in the pre-selected whitelist
(authorized) and reject any other transmit radios not found
in the whitelist. We have experimented with four different
universal software-radio peripherals (USRPs) models with a
total of fourteen USRPs for our RF fingerprinting solution.
Deep learning models and transfer learning are used to train the
RF fingerprinting models. Experimental results reveal that the
ability of RF fingerprinting the USRPs drops as the hardware
quality of USRPs improves. For low-end USRPs an accuracy
of 99% is achieved; however, for high-end radios, the accuracy
decreased to as low as 43%. This is due to the difficulty of
finding anomalies with high-quality hardware, which is essential
for successful RF fingerprinting.

Index Terms—RF-Fingerprinting, machine learning, and
software-defined radios.

I. INTRODUCTION

In recent years, radio frequency (RF) fingerprinting has
gained a lot of attention from the research community. RF
fingerprinting is a technique for identifying a radio transmit-
ter based on the “fingerprint” of its signal transmission, which
is difficult to duplicate. This is due to the inherent variations
embedded in its hardware during the manufacturing process.
For this reason, RF fingerprinting can be utilized for security
purposes. Research so far has shown success using rise-time
signatures, power densities, and transient signal character-
istics as the defining features to classify devices [1]. An
electronic fingerprint allows a wireless device to be identified
based on its radio transmission characteristics [2]. Cellu-
lar providers routinely utilize RF fingerprinting to prevent
mobile phone cloning; a cloned device will have the same
numeric equipment identity but a distinct radio fingerprint.
When a transmitter (e.g., cell phones, or any other form of
radio transmitter) is first turned on, it has a rise time signature
that is generated by minor differences in component values
during manufacturing. The use of a separate transmitter with
the same callsign is easily detected after the rising time

signature is captured and matched to that callsign. Military
signals intelligence and radio regulatory organizations such as
the US Federal Communications Commission (FCC) employ
such techniques to locate unauthorized transmitters. They are
also utilized in subscriber mobile radio (SMR) systems to
assess consumption for billing purposes [3], [4]. The RF fin-
gerprinting technique offers a “physical layer” authentication
solution providing substantially superior performance than
typical higher-layer encryption techniques [4], [5].

RF fingerprinting is still in its infancy; more research needs
to be done to further improve the detection capabilities as
outlined in [6]. Even though progress in this area has been
achieved more recently, the importance of this topic can
date back to the Vietnam War era when the first radiometric
identification systems were developed to distinguish between
friendly and enemy radars [3]. In 2008, a team from the
University of Wisconsin and Rutgers University explored
using radiometric signatures from signals to identify wireless
devices. They came up with the passive radiometric device
identification system (PARADIS) that utilized the modulation
domain to manipulate and classify the signals which they
found to produce a high accuracy [3]. Since then, more
research has been done using deep learning methods for
classification. Variations of convolutional neural networks
(CNNs) have been the most popular to implement for this
purpose. A team at Northeastern University experimented
with a custom and modified version of a ResNet architecture
in which they found some success with accuracy sitting at
about 77% to 93% depending on how many devices they
tested with and the environmental conditions [1].

CNN-driven RF fingerprinting-based identification of un-
manned aerial vehicles (UAVs) by exploiting the transmitter
constellations is proposed by S. Mohanti et al. in [7]. The
underlying architecture is based on a one-dimensional version
of the standard visual geometry group (VGG) network archi-
tecture. One of the challenges of a trained neural network
is that it undergoes performance degradation if it is applied
to another day that experiences a different channel. As a
consequence, the study proposes a processing block to deal
with this issue by arranging the in-phase and quadrature-
phase (IQ) samples. To overcome this problem, G. Reus-Mun



et al. [8] study the triplet loss function. The proposed triplet
network architecture-based solution is capable of successfully
classifying different transmitters even when training and
testing are performed on different days.

Mohanti et al. [7] studied RF fingerprinting with the added
element of UAVs. They also used a CNN but pre-processed
the transmitted signals to intentionally introduce a distinct
physical layer signature – the one they “injected” would be
the feature their network would identify. In the past year,
researchers have tried device identification by focusing on
“weight pruning” to achieve minor accuracy loss in the CNN
[9] and by the use of an echo state network (ESN), which
yielded an average classification accuracy of 98.11% [10].

Vo-Huu et al. [11] explore RF fingerprinting of Wi-Fi
devices by using a software-defined radio (SDR). A set of
non-AI-based techniques are developed for distinguishing
different Wi-Fi cards. The authors were able to distinguish
between models with a success rate of 95%. They also found
that it is possible to uniquely identify a device with a 47%
success rate if the samples are collected within a 10s interval.

Though the same overarching topic of RF fingerprinting
is explored, there are various environmental conditions to be
considered and numerous approaches that have been and can
be taken. Partially for this reason, the problem of wireless
security using RF fingerprinting is still very relevant today.
To address this problem, we propose utilizing SDR tools
and concepts, which have proven to be extremely beneficial
to the RF research community. SDR has made it possible
to advance research directions in wireless communications
by allowing the implementation of more advanced concepts
and theories using the SDR platform, without which it is
very difficult to implement [12]. In addition, we explored
machine learning algorithms including deep learning, which
have recently gained attention from the wireless communities
[12], [13].

Unlike the previous research work, in this study, we
utilize an SDR to fingerprint a collection of other SDRs
with different models and brands, and among the same
model and brand. The main objective of this paper is to
implement an autonomous system for identifying authorized
and unauthorized users via RF fingerprinting. An original
and complete data set of signals containing the IQ data
received from SDRs is gathered and used to train a deep
learning network. These received raw signals were converted
to spectrogram plots. This pre-processed data is then used
as the input to three different deep learning networks to
train on the classification of the type of SDR and of each
individual device. Experimental results reveal that the ability
of RF fingerprinting the USRPs drops as the quality of
USRPs improves. For low-end USRPs an accuracy of 99%
is achieved; however, as the radios became more advanced,
the accuracy decreased to as low as 43%. This is due to the
difficulty of finding anomalies with higher-quality hardware,
which is essential for successful RF fingerprinting.

The rest of the paper is organized as follows. In Section II,
we present the hardware configuration and setup. In Section
III, we discuss the RF fingerprinting experimental results and
analysis before presenting our conclusion in Section IV.

II. HARDWARE AND EXPERIMENTAL SETUP

To perform the RF fingerprinting experimentation we have
used four different types of USRPs, (a) NI USRP 2920, (b)
NI USRP 2901, (c) Ettus Research USRP B205mini, and (d)
Adalm-Pluto, which are shown in Fig. 1.

(a) (b)

(c) (d)

Fig. 1: (a) NI USRP 2920 (b) NI USRP 2901 (c) Ettus
Research USRP B205mini (d) Adalm-Pluto.

The dataset is captured using two Dell Latitude E7420
laptops, a transmitter, a receiver, and Simulink modules.
Fourteen different USRPs, i.e., two NI USRP 2920, four NI
USRP 2901, four Ettus Research USRP B205min, and four
Adalm-Pluto are used as transmitters and one additional NI
USRP 2920 is used as a receiver during the experiments.
To ensure that the data captured would only reflect the
inherent characteristics of the transmitter, only one device
was transmitted at a time. This prevented false positive results
due to channel impairments. We have taken precautions to
minimize our neural network identifying the difference in
channels rather than the difference in device transmission
characteristics. Each transmitter is placed about 30 cm from
the receiver, as shown in Fig. 3, which is the experimental
setup for Adalm-Pluto. This ensured that there would be
less variation between results and established a baseline for
consistency.

Fig. 3: Experimental setup for Adalm-Pluto SDRs.

A. SDR Configuration
We program and configure the SDRs using both MATLAB

and Simulink. MATLAB is also used for frequency correction
and adjustment before initiating the data acquisition process.



Fig. 2: Hardware setup.

This ensured that the center frequencies are aligned on the
transmitter and the receiver side. Simulink modules are used
to modulate the transmission message into quadrature phase-
shift keying (QPSK), transmit, and then synchronize the
transmitter and receiver. Figure 4 shows inside the QPSK
receiver system module on Simulink. A fixed message is sent
ten times over a period of eight seconds. Before each cycle,
a QPSK-modulated Barker code preamble is sent to ensure
synchronization and to ensure that only the message data is
recorded for use in the dataset.

B. Dataset

The dataset is built using MATLAB and Simulink models,
to send and receive a predetermined message modulated with
QPSK at 915 MHz. The QPSK model utilized a Barker
code preamble to ensure synchronization between transmitter
and receiver. This signal is repeatedly recorded for each
device, labeled, and processed. This message is received
and recorded into a time series ‘.mat’ file. The received
data is then converted into spectrograms of 1 sec. duration
each using MATLAB and is stored in predefined labeled
folders. Overall, about 11, 200 spectrogram data sets are
generated for deep learning training purposes and roughly
800 spectrograms from each USRPs.

Fig. 4: Inside the QPSK receiver subsystem module.

C. Signal Post-Processing

Five types of spectrograms were generated from the sig-
nals which showed the real part, the imaginary part, the
complex part, the complex-valued power density spectrum,
and a three-dimensional waterfall for the complex-valued
power density. After experimenting with the five different
image types we concluded that complex-valued spectrograms
provided the best results. Several images of real and complex

spectrograms are shown in Fig. 5. The complex value images
were used as the training data input for the neural network.

(a) (b)

(c) (d)

Fig. 5: (a) Real signal spectrogram for B205mini (b) Com-
plex signal spectrogram for B205mini (c) Real signal spec-
trogram for Adalm-Pluto (d) Complex signal spectrogram for
Adalm-Pluto.

III. RF FINGERPRINTING EXPERIMENTAL RESULTS

In our study, we have explored different neural network ar-
chitectures including the traditional CNN architecture shown
in Fig. 6, as well as more popular deep convolutional neural
networks including GoogLeNet, ResNet-50, and SqueezeNet.
We explore the possibility of RF fingerprinting i) between the
four different SDRs models (Adalm-Pluto, USRP B205min,
USRP 2901, and USRP 2920), ii) among all the 14 different
SDRs, and iii) within the four individual models of SDRs.
The training parameters are selected using a heuristic ap-
proach. The initial learning rate is set to 0.0001, the max
epochs set to 10, and the min batch size set to 20. GoogLeNet
architecture provided the best results, compared to the other
ones we experimented with. Therefore, we will be presenting
the GoogLeNet results.

A. RF Fingerprinting Between Different SDR Brands/Models
In the first study, we explore RF fingerprinting between the

four different models/brands of SDRs ranging from low-end
to high-end ones (i.e., Adalm-Pluto, USRP B205min, USRP
2901, and USRP 2920). As shown in Fig. 7, the validation
accuracy of 81.33% is achieved in RF fingerprinting different
models/brands of SDRs.



Fig. 6: Convolutional neural network architecture.

Fig. 7: Accuracy and loss training and validation results for
distinguishing between different models/brands of SDR with
an accuracy of 81.33%.

B. RF Fingerprinting Among All the 14 Different SDRs
In the second study, we explore RF fingerprinting among

all the 14 different SDRs. In this data set, we use four
Adalm-Plutos, four USRP B205min, and four USRP 2901 as
well as two USRP 2920. As shown in Fig. 8, the validation
accuracy drops to 75.45% in RF fingerprinting among all
the 14 different SDRs. From the results, it is evident that as
the number of SDRs increased it becomes more difficult to
fingerprint the different SDRs.

Fig. 8: Accuracy and loss training results between all 14
different SDRs with 75.45% accuracy.

C. RF Fingerprinting Within the Individual SDR Models
In the next set of studies, we explore RF fingerprinting

within the four individual models of SDRs; Adalm-Plutos,
USRP B205min, USRP 2901, and USRP 2920.

To gain a better understanding of the limitations of RF-
fingerprinting GoogLeNet was trained on a dataset consisting

of each model/brand. This was done to see if the limitations
in accuracy were coming from the model having difficulty
differentiating between different devices of the same make
and model. So each set of spectrograms for each make and
model was separated into mini-datasets. These mini-datasets
were then used to train GoogLeNet to identify whether or not
the decrease in accuracy was due to there being too much
similarity between models of the same make and model.

1) Adalm-Pluto Results: Differentiating between Adalm-
Pluto #1, #2, #3, and #4 yielded a remarkably accurate rate.
GoogLeNet was able to differentiate between these devices
with 99.38% validation accuracy.

Fig. 9: Accuracy and loss training and validation results for
differentiating between individual Adalm-Plutos with 99.38%
accuracy.

2) USRP B205mini Results: Differentiating between
USRP B205mini #1, #2, #3, and #4 yielded interesting
results. GoogLeNet was able to differentiate between these
devices with only 83.53% validation accuracy.

Fig. 10: Accuracy and loss training and validation results
for differentiating between individual B205mini with 83.53%
accuracy.



3) NI USRP 2901: Differentiating between NI USRP 2901
#1, #2, #3, and #4 yielded poor results. GoogLeNet was able
to differentiate between these devices with only a 42.97%
validation accuracy.

Fig. 11: Accuracy and Loss Training and Validation Results
for Differentiating Between Individual USRP 2901 with
42.97% accuracy.

4) NI USRP 2920 Results: Differentiating between NI
USRP 2920 #1 and #2 yielded poor results. GoogLeNet
was able to differentiate between these devices with 50%
accuracy. These results were somewhat expected after the
running of the NI USRP 2901, as they are essentially the
same base model of radio but there are only two devices in
this classification as opposed to four.

Fig. 12: Accuracy and Loss Training and Validation Results
for Differentiating Between Individual USRP 2920 with 50%
accuracy.

IV. CONCLUSION

In this paper, we developed an AI-based RF fingerprinting
framework for identifying different software-defined radios
(SDRs) at the physical layer. We have used a GoogLeNet-
based machine learning model that could distinguish a unique
authorized transmitting device with 75.45% accuracy among
14 devices which consisted of four different brands. However,
the model was more accurate when models of the transmitter
were differentiated from each other as it had an accuracy
of 81.31%. It is reasonable to hypothesize that there are
larger differences in the structure and characteristics of the
transmission signal when the radio models differ. Additional
classification within the individual brands resulted in an
observed correlation between the sophistication of the make

of SDR and the accuracy achieved. The basic Adalm-Pluto
SDRs yielded a high accuracy of 99%; however, as the radios
become more on higher quality, e.g., NI USRP 2920, the
accuracy decreased to as low as 43%.
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