1.
$$\int \frac{3}{t^2} dt =$$
(a)
$$\frac{3}{t} + C$$
(b)
$$\boxed{-\frac{3}{t} + C}$$
(c)
$$\frac{6}{t^3} + C$$
(d)
$$-\frac{6}{t^3} + C$$

We have

$$\int \frac{3}{t^2} dt = \int 3t^{-2} dt$$
$$= \frac{3}{-1t^{-1}} + C$$
$$= -\frac{3}{t} + C.$$

2. The area under the graph of $f(x) = \sqrt[3]{x}$ from x = 2 to x = 5 is

(a)
$$\lim_{n \to \infty} \left(\sum_{i=1}^{n} \sqrt[3]{x_i} \right)$$

(b)
$$\lim_{n \to \infty} \left(\sum_{i=1}^{n} \sqrt[3]{x_i} \cdot \frac{2}{n} \right)$$

(c)
$$\lim_{n \to \infty} \left(\sum_{i=1}^{n} \sqrt[3]{x_i} \cdot \frac{3}{n} \right)$$

(d)
$$\lim_{n \to \infty} \left(\sum_{i=1}^{n} \sqrt[3]{x_i} \cdot \frac{5}{n} \right)$$

The formula for the area under f(x) from x = a to x = b is

$$\lim_{n \to \infty} \left(\sum_{i=1}^n \sqrt[3]{x_i} \Delta x \right),$$

where $\Delta x = \frac{b-a}{n}$. In this case $\Delta x = \frac{5-2}{n} = \frac{3}{n}$, so the formula is $\lim_{n \to \infty} \left(\sum_{i=1}^n \sqrt[3]{x_i} \cdot \frac{3}{n} \right)$.

3.
$$\int_0^4 |x-2| \, dx =$$

- (a) 0
- (b) 2
- (c) 4
- (d) does not exist.

 $\int_{0}^{4} |x-2| dx$ represents the combined area of the regions shown at right, which is 4 (each triangle has area 2).

4.
$$\int_{0}^{\pi/2} 5\sin\theta \, d\theta =$$

(a) 10
(b) 0

- (c) -5
- (d) 5

We have

$$\int_{0}^{\pi/2} 5\sin\theta \, d\theta = -5\cos\theta \Big|_{0}^{\pi/2}$$
$$= -5\left(\cos\left(\frac{\pi}{2}\right) - \cos\theta\right)$$
$$= -5(0-1) = 5.$$

5.
$$\int_{0}^{1} x^{2} (1 + x^{3})^{4} dx =$$
(a) $\frac{32}{5}$
(b) $\frac{32}{15}$
(c) $\frac{31}{5}$
(d) $\boxed{\frac{31}{15}}$

Let $u = 1 + x^3$. Then $du = 3x^2 dx$, and we get

$$\int_{0}^{1} x^{2} (1+x^{3})^{4} dx = \frac{1}{3} \int_{0}^{1} 3x^{2} (1+x^{3})^{4} dx$$
$$= \frac{1}{3} \int_{?}^{?} u^{4} du = \frac{1}{3} \cdot \frac{u^{5}}{5} \Big|_{?}^{?}$$
$$= \frac{1}{15} (1+x^{3})^{5} \Big|_{0}^{1}$$
$$= \frac{1}{15} \left((1+1^{3})^{5} - (1+0^{3})^{5} \right)$$
$$= \frac{1}{15} (32-1) = \frac{31}{15}.$$

1

Since
$$y = x$$
 is the curve on top and $y = x^2$ is the curve on the bottom, the area is

$$\int_0^1 (x - x^2) \, dx = \frac{x^2}{2} - \frac{x^3}{3} \Big|_0^1$$
$$= \frac{1}{2} - \frac{1}{3} = \frac{1}{6}.$$

7. The volume of the solid formed by rotating the region enclosed by the curves $y = x^2$ and y = 3x - 2 about the x-axis is

(a)
$$2\pi \int_{1}^{2} x(3x-2-x^{2}) dx$$

(b) $2\pi \int_{1}^{2} x(x^{2}-(3x-2)) dx$
(c) $\pi \int_{1}^{2} ((3x-2)^{2}-x^{4}) dx$
(d) $\pi \int_{1}^{2} (x^{4}-(3x-2)^{2}) dx$

The region is shown above. From the answer choices you can see that the curves intersect at x = 1 and x = 2 (or you can set $x^2 = 3x - 2$ and solve for x). Since we are rotating a region formed by <u>functions of x</u> about a *horizontal* axis, we should use the **disk** method. Therefore we have R = 3x - 2 and $r = x^2$, and the volume is

$$V = \pi \int_{1}^{2} ((3x - 2)^2 - (x^2)^2) \, dx.$$

- 8. The volume of the solid formed by rotating the region enclosed by the curves $y = x^2$ and y = 3x 2 about the y-axis is
 - (a) $\pi \left(7 \frac{33}{5}\right)$ (b) $\pi \left(15 - \frac{33}{5}\right)$ (c) π
 - (d) $\frac{\pi}{2}$

This is the same region as in #7, but this time we are rotating about a *vertical* axis. So we use the **shell** method, and the volume is

$$V = 2\pi \int_{1}^{2} x(3x - 2 - x^{2}) dx$$

= $2\pi \int_{1}^{2} (3x^{2} - 2x - x^{3}) dx$
= $2\pi (x^{3} - x^{2} - \frac{1}{4}x^{4}) \Big|_{1}^{2}$
= $2\pi ((8 - 4 - 4) - (1 - 1 - \frac{1}{4}))$
= $2\pi (0 - (-\frac{1}{4}))$
= $\frac{\pi}{2}$.

9. If 24 lbs. of force are required to stretch a spring 18 in. (= 1.5 ft.) beyond its natural length, which expression best represents the work done in stretching the spring 10 ft. beyond its natural length? *Hint*. Remember Hooke's Law: F(x) = kx.

(a)
$$\int_{0}^{10} 16x \, dx$$

(b)
$$\int_{0}^{10} \frac{4}{3}x \, dx$$

(c)
$$\int_{0}^{1.5} 10x \, dx$$

(d)
$$\int_{0}^{1.5} 8x \, dx$$

By Hooke's Law, $24 = k \cdot 1.5$ for this spring, so the spring constant is $k = \frac{24}{1.5} = \frac{48}{3} = 16$. Therefore the force on the spring when stretched x units beyond its natural length is F(x) = 16x, and the work done to stretch it 10 ft. is $\int_0^{10} 16x \, dx$.

- 10. The average value of the function $f(x) = \sin\left(\frac{\pi}{2}x\right)$ on the interval [0, 2] is
 - (a) $\begin{array}{c} \frac{2}{\pi} \\ \text{(b)} \quad \frac{4}{\pi} \\ \text{(c)} \quad \frac{1}{\pi} \\ \text{(d)} \quad \frac{3}{\pi} \end{array}$

The average value of $f(x) = \sin\left(\frac{\pi}{2}x\right)$ on the interval [0, 2] is

$$\frac{1}{2}\int_0^2 \sin\left(\frac{\pi}{2}x\right) \, dx = \frac{1}{2} \cdot \frac{2}{\pi} \left(-\cos\left(\frac{\pi}{2}x\right)\right) \Big|_0^2$$

use a *u*-substitution with $u = \frac{\pi}{2}x$ as in the practice midterm, #13.

$$= -\frac{1}{\pi} (\cos \pi - \cos 0)$$
$$= -\frac{1}{\pi} (-1 - 1) = \frac{2}{\pi}.$$

BONUS. (5 points) The volume of the solid formed by rotating the rectangle with vertices (2, 2), (3, 3), (5, 1), and (4, 0) about the line y = -x + 2 is

- (a) 4π
- (b) 8π
- (c) $4\pi\sqrt{2}$
- (d) $8\pi\sqrt{2}$
- (e) $12\pi\sqrt{2}$

The rectangle is shown along with the line y = -x + 2. When rotated about the line, the rectangle makes a cylinder with inner radius $r = \sqrt{2}$, outer radius $R = 2\sqrt{2}$, and height $h = 2\sqrt{2}$. Therefore the volume is

$$V = \pi (R^2 - r^2)h$$

= $\pi ((2\sqrt{2})^2 - (\sqrt{2})^2) 2\sqrt{2}$
= $\pi (8 - 2) 2\sqrt{2} = 12\sqrt{2}.$