.

1.
$$
\int \frac{3}{t^2} dt =
$$
\n(a)
$$
\frac{3}{t} + C
$$
\n(b)
$$
\frac{3}{t} + C
$$
\n(c)
$$
\frac{6}{t^3} + C
$$
\n(d)
$$
-\frac{6}{t^3} + C
$$

We have

$$
\int \frac{3}{t^2} dt = \int 3t^{-2} dt
$$

$$
= \frac{3}{-1t^{-1}} + C
$$

$$
= -\frac{3}{t} + C.
$$

2. The area under the graph of $f(x) = \sqrt[3]{x}$ from $x = 2$ to $x = 5$ is

(a)
$$
\lim_{n \to \infty} \left(\sum_{i=1}^{n} \sqrt[3]{x_i} \right)
$$

\n(b) $\lim_{n \to \infty} \left(\sum_{i=1}^{n} \sqrt[3]{x_i} \cdot \frac{2}{n} \right)$
\n(c) $\boxed{\lim_{n \to \infty} \left(\sum_{i=1}^{n} \sqrt[3]{x_i} \cdot \frac{3}{n} \right)}$
\n(d) $\lim_{n \to \infty} \left(\sum_{i=1}^{n} \sqrt[3]{x_i} \cdot \frac{5}{n} \right)}$

The formula for the area under $f(x)$ from $x = a$ to $x = b$ is

$$
\lim_{n\to\infty}\left(\sum_{i=1}^n \sqrt[3]{x_i}\Delta x\right),\,
$$

where $\Delta x = \frac{b-a}{n}$ $\frac{-a}{n}$. In this case $\Delta x = \frac{5-2}{n} = \frac{3}{n}$ $\frac{3}{n}$, so the formula is $\lim_{n \to \infty} \left(\sum_{i=1}^{n} \right)$ $\sqrt[3]{x_i} \cdot \frac{3}{x_i}$ n \setminus

3.
$$
\int_0^4 |x - 2| \, dx =
$$

- (a) 0
- (b) 2
- (c) $\boxed{4}$
- (d) does not exist.

 \int_0^4 0 $|x-2|$ dx represents the combined area of the regions shown at right, which is 4 (each triangle has area 2).

4.
$$
\int_0^{\pi/2} 5 \sin \theta \, d\theta =
$$

(a) 10
(b) 0

 $(c) -5$ (d) 5

We have

$$
\int_0^{\pi/2} 5 \sin \theta \, d\theta = -5 \cos \theta \Big|_0^{\pi/2}
$$

= -5 \left(\cos \left(\frac{\pi}{2} \right) - \cos 0 \right)
= -5(0 - 1) = 5.

5.
$$
\int_0^1 x^2 (1+x^3)^4 dx =
$$

\n(a) $\frac{32}{5}$
\n(b) $\frac{32}{15}$
\n(c) $\frac{31}{5}$
\n(d) $\frac{31}{15}$

Let $u = 1 + x^3$. Then $du = 3x^2 dx$, and we get

$$
\int_0^1 x^2 (1+x^3)^4 dx = \frac{1}{3} \int_0^1 3x^2 (1+x^3)^4 dx
$$

= $\frac{1}{3} \int_2^7 u^4 du = \frac{1}{3} \cdot \frac{u^5}{5} \Big|_2^7$
= $\frac{1}{15} (1+x^3)^5 \Big|_0^1$
= $\frac{1}{15} ((1+1^3)^5 - (1+0^3)^5)$
= $\frac{1}{15} (32-1) = \frac{31}{15}.$

1

Since
$$
y = x
$$
 is the curve on top and $y = x^2$ is the curve on the bottom, the area is

$$
\int_0^1 (x - x^2) dx = \frac{x^2}{2} - \frac{x^3}{3} \Big|_0^1
$$

= $\frac{1}{2} - \frac{1}{3} = \frac{1}{6}$.

7. The volume of the solid formed by rotating the region enclosed by the curves $y = x^2$ and $y = 3x - 2$ about the x-axis is

(a)
$$
2\pi \int_{1}^{2} x(3x - 2 - x^{2}) dx
$$

\n(b) $2\pi \int_{1}^{2} x(x^{2} - (3x - 2)) dx$
\n(c) $\pi \int_{1}^{2} ((3x - 2)^{2} - x^{4}) dx$
\n(d) $\pi \int_{1}^{2} (x^{4} - (3x - 2)^{2}) dx$

The region is shown above. From the answer choices you can see that the curves intersect at $x = 1$ and $x = 2$ (or you can set $x^2 = 3x - 2$ and solve for x). Since we are rotating a region formed by <u>functions of x</u> about a *horizontal* axis, we should use the **disk** method. Therefore we have $R = 3x - 2$ and $r = x^2$, and the volume is

$$
V = \pi \int_1^2 ((3x - 2)^2 - (x^2)^2) dx.
$$

- 8. The volume of the solid formed by rotating the region enclosed by the curves $y = x^2$ and $y = 3x - 2$ about the y-axis is
	- (a) $\pi (7 \frac{33}{5})$ $\frac{33}{5}\right)$ (b) $\pi (15 - \frac{33}{5})$ $\frac{33}{5}\right)$ (c) π (d) $\frac{\pi}{2}$

This is the same region as in $#7$, but this time we are rotating about a *vertical* axis. So we use the shell method, and the volume is

$$
V = 2\pi \int_{1}^{2} x(3x - 2 - x^{2}) dx
$$

= $2\pi \int_{1}^{2} (3x^{2} - 2x - x^{3}) dx$
= $2\pi (x^{3} - x^{2} - \frac{1}{4}x^{4}) \Big|_{1}^{2}$
= $2\pi ((8 - 4 - 4) - (1 - 1 - \frac{1}{4}))$
= $2\pi (0 - (-\frac{1}{4}))$
= $\frac{\pi}{2}$.

9. If 24 lbs. of force are required to stretch a spring 18 in. (= 1.5 ft.) beyond its natural length, which expression best represents the work done in stretching the spring 10 ft. beyond its natural length? *Hint.* Remember Hooke's Law: $F(x) = kx$.

(a)
$$
\int_0^{10} 16x \, dx
$$

\n(b)
$$
\int_0^{10} \frac{4}{3}x \, dx
$$

\n(c)
$$
\int_0^{1.5} 10x \, dx
$$

\n(d)
$$
\int_0^{1.5} 8x \, dx
$$

By Hooke's Law, $24 = k \cdot 1.5$ for this spring, so the spring constant is $k = \frac{24}{1.5} = \frac{48}{3} = 16$. Therefore the force on the spring when stretched x units beyond its natural length is $F(x) = 16x$, and the work done to stretch it 10 ft. is \int^{10} 0 $16x\,dx$.

- 10. The average value of the function $f(x) = \sin \left(\frac{\pi}{2} \right)$ $(\frac{\pi}{2}x)$ on the interval $[0,2]$ is
	- $(a) \left| \frac{2}{\pi} \right|$ (b) $\frac{4}{\pi}$ (c) $\frac{1}{\pi}$ (d) $\frac{3}{\pi}$

The average value of $f(x) = \sin \left(\frac{\pi}{2}\right)$ $(\frac{\pi}{2}x)$ on the interval $[0,2]$ is

$$
\frac{1}{2} \int_0^2 \sin\left(\frac{\pi}{2}x\right) dx = \frac{1}{2} \cdot \frac{2}{\pi} \left(-\cos\left(\frac{\pi}{2}x\right)\right) \Big|_0^2
$$

use a *u*-substitution with $u = \frac{\pi}{2}$ $\frac{\pi}{2}x$ as in the practice midterm, $\#13$.

$$
= -\frac{1}{\pi} (\cos \pi - \cos 0)
$$

= $-\frac{1}{\pi}(-1 - 1) = \frac{2}{\pi}.$

BONUS. (5 points) The volume of the solid formed by rotating the rectangle with vertices (2, 2), (3, 3), (5, 1), and (4, 0) about the line $y = -x + 2$ is

- (a) 4π
- (b) 8π
- (c) 4π √ 2
- (d) 8π √ 2

$$
(e) \left\lceil \frac{12\pi\sqrt{2}}{2} \right\rceil
$$

The rectangle is shown along with the line $y = -x + 2$. When rotated about the line, the rectangle makes a cylinder with inner radius $r =$ $\sqrt{2}$, outer radius $R = 2\sqrt{2}$, and height rectangle makes a cylinder with if
 $h = 2\sqrt{2}$. Therefore the volume is

$$
V = \pi (R^2 - r^2)h
$$

= $\pi ((2\sqrt{2})^2 - (\sqrt{2})^2)2\sqrt{2}$
= $\pi (8 - 2)2\sqrt{2} = 12\sqrt{2}$.