
Math 76 Practice Problems for Midterm I - Solutions
§§6.1-7.1

Multiple Choice. Circle the letter of the best answer.

1. What expression best represents the area between x = y2 and x = −y from y = −1 to y = 1?

(a)
∫ 0

−1
(y2 + y) dy +

∫ 1

0
(−y − y2) dy

(b)
∫ 0

−1
(−y − y2) dy +

∫ 1

0
(y2 + y) dy

(c)
∫ 1

−1
(y2 + y) dy

(d)
∫ 0

−1
(y2 − y) dy +

∫ 1

0
(y − y2) dy

The region described is in two pieces, as shown.

The two curves cross at y = 0.

From y = −1 to y = 0, x = −y is on the right.

From y = 0 to y = 1, x = y2 is on the right.

Therefore the area is ∫ 0

−1
(−y − y2) dy +

∫ 1

0
(y2 − (−y)) dy

=
∫ 0

−1
(−y − y2) dy +

∫ 1

0
(y2 + y) dy.

2. The volume of the solid formed by rotating the region enclosed by the curves y = 1
x3 , y = 1

x2 ,
and x = 2 about the line x = −1 is

(a) 2π

∫ 2

0
(x + 1)

(
1
x3

− 1
x2

)
dx

(b) 2π

∫ 2

1
(x + 1)

(
1
x2

− 1
x3

)
dx

(c) 2π

∫ 2

0
(x − 1)

(
1
x2

− 1
x3

)
dx

(d) 2π

∫ 2

1
(1 − x)

(
1
x2

− 1
x3

)
dx

The region being rotated is shown at right
with the axis of rotation. It is the same region
as in Work and Answer #1. Since the region
is formed from functions of x and is being ro-
tated about a vertical axis, we use the shell
method:
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At any x between 1 and 2, the height of the shell is h = 1
x2 − 1

x3 and the radius is r = x + 1.
Therefore the volume is

2π

∫ 2

1
(x + 1)

(
1
x2

− 1
x3

)
dx.

3. Lois Lane, whose mass is 50 kg, is hanging from a 20-meter rope tied to a crane. Superman is at
the top of the crane. In order to rescue Lois, he must pull the rope all the way up to the top of
the crane. If the rope has a mass of 10 kg, then the work Superman must do in order to rescue
Lois is

(a) 10,780 N

(b) 10,780 J

(c) 9,800 N

(d) 9,800 J

The sneaky way to determine the answer is to notice that

• The work done (metric system) is measured in Joules (J), so the answer is either (b) or (d).

• Lois Lane’s weight is 50 · 9.8 = 490 N, so the work required to lift only her is 490 · 20 = 9800
J, since the rope is 20 m long. So the answer must be (b) since Superman also has to pull
the rope up!

But here’s how to do the integral:

The rope weighs 10 · 9.8 = 98 N, or 98
20 = 4.9 Newtons per meter. So if Superman has pulled up

x meters of rope, the weight of the rope he has pulled up is 4.9x. Therefore the weight he is still
pulling is 98 − 4.9x = 4.9(20 − x) Newtons, in addition to Lois’s 490 N. The total work done,
then, is

W =
∫ 20

0
(4.9(20 − x) + 490) dx = 4.9

(
120 · 20 − 1 · 202

2

)
− (0 − 0)

= 4.9
∫ 20

0
(20 − x + 100) dx = 4.9(2400 − 200)

= 4.9
∫ 20

0
(120 − x) dx = 4.9(2200)

= 4.9
(

120x − 1
2
x2

) ∣∣∣∣20

0

= 10, 780 J

4. The temperature (in ◦F) t hours after 12 noon is f(t) = 50+14 sin(πt
12). The average temperature

from 2 pm to 10 pm is

(a) 1
8(500 + 28

π ) ◦F

(b) 1
8(400 + 14·12

√
3

π ) ◦F

(c) 225 + 14
π

◦F

(d) 450 − 14·12
π

◦F
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The average temperature is the average value of the function f(t) from t = 2 to t = 10, which is

1
10 − 2

∫ 10

2
50 + 14 sin

(
πt

12

)
dt =

1
8

(
50t − 14 · 12

π
cos
(

πt

12

))∣∣∣∣10

2

=
1
8
(
(50 · 10 − 14·12

π cos(5π
6 )) − (50 · 2 − 14·12

π cos(π
6 ))
)

=
1
8

(
400 − 14·12

π

(
−
√

3
2

)
+ 14·12

π

(√
3

2

))
=

1
8

(
400 +

14 · 12
√

3
π

)
◦F.

5. A rectangular aquarium 4 ft. wide, 6 ft. long, and 2 ft. high is full of water. If a pump is placed
at the top of the tank, the work done in pumping half the water out is

(a) 62.5(6) ft.-lb.

(b) 62.5(12) ft.-lb.

(c) 62.5(24) ft.-lb.

(d) 62.5(48) ft.-lb.

Using the formula W = ω

∫ b

0
(x + P )A(x) dx and the weight of water ω = 62.5 lb./ft.3, we get

the integral

W = 62.5
∫ 1

0
(x + 0)24 dx,

since we are pumping water from a depth of 0 ft. to a depth of 1 ft. (half the water in the tank).
P = 0 since the pump is at the top of the tank, and A(x) = 6 · 4 = 24 at all depths x. Evaluating
the above integral, we get

62.5
∫ 1

0
24x dx = 62.5 · 12x2

∣∣∣∣1
0

= 62.5 · 12(12 − 02) = 62.5(12) ft.-lb.

6.
∫ 1

0
xex dx =

(a) 1

(b) e

(c) e − 1

(d) 0

Using integration by parts, we have

u = x v = ex

↓ ↑
du = dx dv = ex dx

which gives ∫ 1

0
xex dx = xex

∣∣∣∣1
0

−
∫ 1

0
ex dx

= xex − ex

∣∣∣∣1
0

= 1e1 − e1 − (0e0 − e0)

= e − e − 0 + 1 = 1
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7. The volume of the solid formed by rotating the region shown about the y-axis is

(a) 2π

∫ π/4

0
y (sin y − cos y) dy

(b) π

∫ π/4

0
(cos y − sin y)2 dy

(c) π

∫ π/4

0

(
cos2 y − sin2 y

)
dy

(d) 2π

∫ π/4

0
y (cos y − sin y) dy

x = sin y
x = cos y

Since the region is formed by functions of y and is being rotated about a vertical axis, we use the
disk method:

At any y between 0 and π
4 , the outer radius of the disk is R = cos y and the inner radius of the

disk is r = sin y. Therefore the volume is

π

∫ π/4

0

(
(cos y)2 − (sin y)2

)
dy

= π

∫ π/4

0

(
cos2 y − sin2 y

)
dy.

Fill-In.

1. If the region enclosed by the curves y =
√

x + 2, y = 1 and x = 2 is rotated about the x-axis, the
volume of the resulting solid is 9π

2 .

The region is shown at right. Since we are rotating a region
formed from functions of x about a horizontal axis, it is eas-
iest to use disks. The region goes from x = −1 to x = 2.
Also note that R =

√
x + 2 and r = 1. Thus we get

y =  x + 2

x 
=

 2

y = 1

V = π

∫ 2

−1
(
√

x + 2)2 − 12 dx = π

(
1
2
x2 + x

) ∣∣∣∣2
−1

= π

∫ 2

−1
(x + 2 − 1) dx = π

(
2 + 2 −

(
1
2
− 1
))

= π

∫ 2

−1
(x + 1) dx = π

(
9
2

)
=

9π

2

This region can also be rewritten in terms of y and the problem solved using shells. See me for
help if you want to go over this.

2. If the region enclosed by the curves y = 5− x2 and y = x + 3 is rotated about the line y = 1, the
volume of the resulting solid is 108π

5 .
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The region is shown at right. Since we are rotating a region
formed from functions of x about a horizontal axis, it is easiest
to use disks. To find where the curves intersect, we set them
equal to each other and solve for x:

5 − x2 = x + 3

x2 + x − 2 = 0
(x + 2)(x − 1) = 0
x = −2 , x = 1

y =
 5 -

 x

y = 1

2

y = x + 3

Therefore the region goes from x = −2 to x = 1. Also note that R = (5 − x2) − 1 = 4 − x2 and
r = (x + 3) − 1 = x + 2. Thus we get

V = π

∫ 1

−2
(4 − x2)2 − (x + 2)2 dx

= π

∫ 1

−2
(16 − 8x2 + x4 − (x2 + 4x + 4)) dx

= π

∫ 1

−2
(12 − 4x − 9x2 + x4) dx = π

(
12x − 2x2 − 3x3 +

1
5
x5

) ∣∣∣∣1
−2

= π

((
12 − 2 − 3 +

1
5

)
−
(
−24 − 8 + 24 − 32

5

))
= π

(
7 +

1
5

+ 8 +
32
5

)
= π

(
15 +

33
5

)
=

108π

5

3. If 25 N of force are required to keep a spring stretched 20 cm beyond its natural length, then the
spring constant for the spring is k = 125 N/m .

We use Hooke’s Law F (x) = kx. First we must convert 20 cm to 0.2 = 1
5 m. Then 25 = k · 1

5 .
Therefore k = 25 · 5 = 125 N/m

4. The average value of the function f(x) = 4x + 1 on the interval [0, 1] is 3 .

We have

fave =
1

1 − 0

∫ 1

0
4x + 1 dx

= 2x2 + x

∣∣∣∣1
0

= 2 + 1 − (0 + 0) = 3

5.
∫

lnx√
x

dx = 2
√

x lnx − 4
√

x + C .

By parts, let
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u = ln x v = 2
√

x

du =
1
x

dx dv =
1√
x

dx
Then we have

∫
lnx√

x
dx = 2

√
x lnx − 2

∫ √
x · 1

x
dx

= 2
√

x lnx − 2
∫

1√
x

dx

= 2
√

x lnx − 4
√

x + C

6. To evaluate the integral
∫

cos−1(3x) dx, it is best to use integration by parts with u = cos−1(3x)
and dv = dx .

This is similar to the problem
∫

sin−1(x) dx done in class. Please see me if you would like help
actually evaluating this integral.

Graph. More accuracy = more points!
(a) For the function f(x) graphed at right, sketch a
rectangle on the same axes whose area is approximately∫ 6

2
f(x) dx.

The top of the rectangle is a horizontal line for which,
between f(x) and the line, there is the same amount of
area above the line as below.

(b) The average value fave of f(x) from x = 2 to x = 6 is approximately 2.4 .

The top of the rectangle is at the average value of f(x), approximately y = 2.4.

(c) The approximate value(s) of c so that f(c) = fave is/are 2.8 and 5 (list all values).

We want the x-values for which f(x) = fave = 2.4. From the graph, these values are approximately
2.8 and 5.
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Work and Answer. You must show all relevant work to receive full credit.

1. Find the area enclosed by the curves y = 1
x2 , y = 1

x3 , and x = 2.
The region described is shown. It is the same region
as in Multiple Choice #2.
Notice that the curve 1

x2 is on top between x = 1 and
x = 2. Therefore the area is∫ 2

1

(
1
x2

− 1
x3

)
dx =

∫ 2

1
(x−2 − x−3) dx

= −x−1 +
1
2
x−2

∣∣∣∣2
1

= −1
x

+
1

2x2

∣∣∣∣2
1

=
(
−1

2
+

1
8

)
−
(
−1 +

1
2

)
=

1
8

y = -1

r = - x + 11
2

y = -1

r = y + 1

2

R =   x + 1 2

y =   x

x = 2y

x = y

y = - x1
2

DISKS SHELLS

h = 2y - y

2. (a) Use the disk method to find the volume of the solid formed by rotating the region enclosed
by the curves x = y2 and x = 2y about the line y = −1.

Since we are rotating about a horizontal axis, we will need to rewrite the curves in terms of
x. The curves intersect at the points (0, 0) and (4, 2), so we will only need the upper half
of the parabola x = y2. Therefore we can rewrite this as y =

√
x (the positive square root).

The region is shown below left, along with R and r. Thus the volume is

V = π

∫ 4

0

(√
x + 1

)2 − (1
2
x + 1

)2

dx

= π

∫ 4

0

(
x + 2

√
x + 1

)
−
(

1
4
x2 + x + 1

)
dx

= π

∫ 4

0

(
−1

4
x2 + 2

√
x

)
dx = π

(
− 1

12
x3 +

4
3
x3/2

) ∣∣∣∣4
0

= π

((
− 1

12
· 43 +

4
3
· 43/2

)
− (0 + 0)

)
= π

(
−16

3
+

32
3

)
=

16π

3
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(b) Use the shell method to find the volume of the solid formed by rotating the region enclosed
by the curves x = y2 and x = 2y about the line y = −1.

Since we are rotating about a horizontal axis, we can leave the curves in terms of y. The
curves intersect at the points (0, 0) and (4, 2), as before. The region is shown on the previous
page (right), along with r and h. Thus the volume is

V = 2π

∫ 2

0
(y + 1)(2y − y2) dy

= 2π

∫ 2

0
(2y2 + 2y − y3 − y2) dy

= 2π

∫ 2

0
(−y3 + y2 + 2y) dy

= 2π

(
−1

4
y4 +

1
3
y3 + y2

) ∣∣∣∣2
0

= 2π

((
−1

4
· 24 +

1
3
· 8 + 22

)
− (0 + 0 + 0)

)
= 2π

(
−4 +

8
3

+ 4
)

=
16π

3

(c) Should the answers to (a) and (b) be the same? Why or why not?

In (a) and (b) we are rotating the same region about the same axis, so the resulting solids should
be the same. Therefore the volumes should be equal.

3. A certain spring has a natural length of 18 in. If 10 lb. of force is needed to keep the spring
stretched to a length of 24 in., what is the work done in stretching it to 36 in.?

This is a problem where the units are in the English system. However, the distance units are in
inches, not feet. So the first thing to do is convert the distances to feet: we have

18 in. = 3
2 ft.

24 in. = 2 ft.
36 in. = 3 ft.

Next we use Hooke’s Law F (x) = kx. We need to use the information in the problem to find k.
The problem says that 10 lb. of force are needed to stretch the spring 2 − 3

2 = 1
2 ft. (remember

that x in Hooke’s Law is the number of feet beyond the natural length). So 10 = k · 1
2 . Therefore

k = 20. So the work done to stretch it to 3 ft. (= 1.5 ft. beyond the natural length) is

W =
∫ 1.5

0
20x dx

= 10x2

∣∣∣∣1.5

0

= 10 · (1.5)2 − 0 = 10 · 2.25 = 22.5 ft.-lb.

4. A tank in the shape of a cylinder on its side is half full of water. The pump is at the top of the
tank, as shown below. Set up, but do not evaluate, an integral for the work done in pumping
all the water out of the tank.
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4 m1 m

x

1- x2

0

x

1

1

We set x = 0 to be the initial water level, as shown above. The pump is 1 m above that, so P = 1

(see the formula W = ω

∫ b

0
(x+P )A(x) dx on the formula list). Since we are in the metric system,

ω = 9800. Finally, the surface area A(x) of the water at each depth x is a rectangle 4 m long and
2
√

1 − x2 m wide (using the Pythagorean Theorem; see the picture), so A(x) = 8
√

1 − x2 square
meters. Therefore the work done is

W = 9800
∫ 1

0
(x + 1) · 8

√
1 − x2 dx

= 78, 400
∫ 1

0
(x + 1)

√
1 − x2 dx

(9800 · 8 = 78, 400).
In case you are interested in evaluating the above integral (it would be great practice!), here’s
the solution:

First distribute the x + 1 to get

78, 400
[∫ 1

0
x
√

1 − x2 dx +
∫ 1

0

√
1 − x2 dx

]
.

This is similar to §6.3 #42 from the homework. For the first integral we use a u-substitution: let
u = 1 − x2. Then du = −2x dx. We also need to change the x-limits to u-limits. When x = 0,
u = 1 − 02 = 1, and when x = 1, u = 1 − 12 = 0. Therefore we get∫ 1

0
x
√

1 − x2 dx = −1
2

∫ 0

1

√
u du (futzing the −2)

=
1
2

∫ 1

0

√
u du (switching the limits and getting rid of the negative)

=
1
2
· 2
3
u3/2

∣∣∣∣1
0

=
1
3
(1 − 0) =

1
3
.
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For the second integral we can use geometry.
∫ 1

0

√
1 − x2 dx represents the area of 1

4 of a circle

of radius 1, so ∫ 1

0

√
1 − x2 dx =

1
4
· π · 12 =

π

4
.

Therefore the final answer for the work done would be

W = 78, 400
(

1
3

+
π

4

)
.

5. Find the average value of the function f(x) = x3 − 2x + 1 on the interval [−2, 1].

We have

fave =
1

1 − (−2)

∫ 1

−2
(x3 − 2x + 1) dx

=
1
3

(
1
4
x4 − x2 + x

) ∣∣∣∣1
−2

=
1
3

((
1
4
− 1 + 1

)
−
(

1
4
· 16 − 4 − 2

))
=

1
12

+
1
3
· 2

=
1
12

+
8
12

=
9
12

=
3
4

6. Evaluate the integral
∫

x sin 3x dx.

Using integration by parts, we have

u = x v = −1
3

cos 3x

↓ ↑
du = dx dv = sin 3x dx

which gives ∫
x sin 3x dx = −1

3
x cos 3x +

1
3

∫
cos 3x dx

= −1
3
x cos 3x +

1
9

sin 3x + C

7. Evaluate the integral
∫

x sin−1(x2) dx.

This is similar to a problem we did in homework, but first we must make the u-substitution
(actually we will use t instead of u because we will soon be using integration by parts, and we

don’t want to confuse the u’s): let t = x2; then dt = 2x dx, and we get
1
2

∫
sin−1(t) dt. Now

using integration by parts, we have

u = sin−1(t) v = t

↓ ↑

du =
1√

1 − t2
dt dv = dt
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which gives

1
2

∫
sin−1(t) dt =

1
2

(
t sin−1(t) −

∫
t√

1 − t2

)
dt

(Now we use one final substitution for the remaining integral: u = 1 − t2. Then du = −2t dt.)

=
1
2

(
t sin−1(t) +

1
2

∫
1√
u

du

)
=

1
2

(
t sin−1(t) +

1
2
· 2u1/2

)
+ C

=
1
2

(
t sin−1(t) +

√
1 − t2

)
+ C. Finally we go back to x’s:

=
1
2
x2 sin−1(x2) +

1
2

√
1 − x4 + C

8. Evaluate the integral
∫

ex sinx dx.

Using integration by parts, we have

u = ex v = − cos x

↓ ↑
du = ex dx dv = sinx dx

which gives ∫
ex sin x dx = −ex cos x +

∫
ex cos x dx.

This is similar to a problem that we did in class. Remember that we had to do parts twice and
solve for the integral. So here’s the second application of integration by parts:

u = ex v = sinx

↓ ↑
du = ex dx dv = cos x dx

We get −ex cos x +
(
ex sinx −

∫
ex sinx

)
. Now we are ready to solve for the integral; we have∫

ex sinx dx = −ex cos x + ex sinx −
∫

ex sinx,

so
2
∫

ex sinx dx = −ex cos x + ex sinx + C.

Therefore ∫
ex sinx dx = −1

2
ex cos x +

1
2
ex sinx + C

9. Evaluate the integral
∫

x2 ln(x3) dx.
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Again, this is similar to problems we have done before. First we substitute u = x3. Then
du = 3x2 dx, and we have 1

3

∫
lnu du. We showed in class that

∫
ln t du = t ln t− t + C (you can

rederive it by letting u = ln t and dv = dt and using parts); therefore we get

1
3

∫
lnu du =

1
3
(u lnu − u) + C

=
1
3
(x3 ln(x3) − x3) + C

If you are feeling clever, convince yourself that the above simplifies to x3
(
lnx − 1

3

)
+ C !

12


