Math 75B Selected Homework Solutions
§814-C (E), 3.5 (S)

83.5 #16, 22. Find the derivative of the function and simplify.

§3.5 #16. y = {/tan"(x)

We have
1 1 ~1/2 1
y = 3 (tan~"(z)) Tia?
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2(1 + x2)/tan"1(z)
§3.5 #22. h(t) = > O
From #14, we know (and have hopefully proved!) that i(sec’l(t)) = ; Therefore
dt V2 —1
we have
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esec_l(t)
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§3.5 #42.*

(a) Sketch the graph of the function f(z) = sin(sin~!(z)).

The domain of sin™* () is —1 < o < 1. We know that for all such z, sin(sin ' (z)) = .
So the graph of f(x) is identical to that of y = x, except with the domain restricted
to —1 < x <1 (next page, left).

(b) Sketch the graph of the function g(z) = sin!(sin(x)) for all z € R.

The domain of sin(z) is R (all real numbers). Therefore this is the domain of g(z),
so we will have to figure out what happens for all x.

Quadrants IV and I. The range of sin™!(z) is —5 <y < 5. We know that for all
z in this interval, sin~*(sin(x)) = x. Since g(z) is periodic with period 27, the
graph will repeat itself for all angles in quadrants IV in I (the preferred interval

[—g, g] consists of angles in quadrants IV and I).



Quadrant II. If z is an angle in quadrant II, say between § and , then sin(x)
is positive. Therefore sin™!(sin(z)) will also come out positive; in fact it will be
the reference angle for x in the first quadrant, which is 7 — z. So the graph of
g(z) will look like the line y = 7 — & for all z in the interval [Z,]. Since g(x)

is periodic, the graph will repeat itself for all angles in quadrant II.

Quadrant III. If z is an angle in quadrant III, say between 7 and 37“, then sin(x)
is negative. Therefore sin™*(sin(z)) will also come out negative; in fact (recalling
some heavy-duty trigonometry from your youth) it will be 7 — z, the angle in
quadrant IV having the same reference angle as that of . So the graph of g(z)
will look like the line y = m — x for all z in the interval [m,2F]. Since g(x) is
periodic, the graph will repeat itself for all angles in quadrant III.

Whew! After all that, we get the graph shown (below right).
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(¢) Show that ¢'(z) sy

- |cosz|
We have

"(z) = ! - cos(x
90 = A =may

COS X

V1 —sin’z

cos
= N (by the Pythagorean identity sin®x + cos®z = 1)

COS X
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Another way to look at this is to consider the graph of g(x). From the properties of



absolute values, we know that

, COS T _
if cosz >0
cos T
CcoS T CcoS T .
= if cosz <0
| cos x| —COST
\undeﬁned if cosz =0

which simplifies to

1 if z is in quadrant IV or I (or in between)
-1 if z is in quadrant II or III (or in between) (1)

undefined if z is an odd multiple of

From the graph of g(z) in part (b), we can see that the slope of the graph is 1 in
quadrants IV and I (and in between, i.e. at multiples of 27r) and —1 in quadrants II
and III (and in between, i.e. at odd multiples of 7 such as 37, 57, —m, etc.). You can

also see that g(z) is not differentiable at odd multiples of 7 (%, 37”, etc.) since there
are sharp corners there. Therefore the derivative of g(x) is exactly as given above in
cos T

formula (1), so ¢'(z) = ——.
(1) 50 9/e) = 1

Sketch the graph of h(x) = cos™'(sin(z)) for 2 € R and find its derivative.

We can do an analysis similar to that in (b) to find the graph. It will also be a

piecewise straight-line graph. For instance, if x is an acute angle, then we know that

cos ' (sinz) is the complement of z, i.e. 2 — x. Also, the range of h(x) is [0, 7], so

we can expect the entire graph to be on or above the z-axis. We can get an idea of
what the rest of the graph looks like by plotting key points in each quadrant:
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We get the graph shown (above right).
The derivative of h(x) is

"(z) = — ! - cos(x
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Alternatively, from the graph we can see that the derivative of h(x) is

1 if  is in quadrant IT or IIT (or in between)
h'(x) =} —1 if z is in quadrant IV or I (or in between)

undefined if z is an odd multiple of 7
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(which happens to be equal to —



