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510 CHAPTER 7 TECHNIQUES OF INTEGRATION

'i { 7.5 Exercises
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then we know from Part 1 of the Fundamental Theorem of Calculus that

F'(x) = e

Thus, f(x) = ¢* has an antiderivative F, but it has been proved that F7 is not an eleme.
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SECTION 7.6 INTEGRATION USING TABLES AND COMPUTER ALGEBRA SYSTEMS
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|| 7.6 Inteqration Using Tables and Computer Algebra Systems

In this section we describe how to use tables and computer algebra systems to integrate
functions that have elementary antiderivatives. You should bear in mind, though, that even
the most powerful computm algebra systems can’t find explicit formulas for the antideriv-
atives of functions like e* or the other functions described at the end of Section 7.5,

[[| Tables of Infegrals .
Tables of indefinite integrals are very useful when we are confronted by an integral that is
difficult to evaluate by hand and we don’t have access to a computer algebra system. A rel-
atively brief table of 120 integrals, categorized by form, is provided on the Reference Pages
at the back of the book. More extensive tables are available in CRC Standard Mathe-
matical Tables and Formulae, 30th ed. by Daniel Zwillinger (Boca Raton, FL: CRC
Press, 1995) (581 entries) or in Gradshteyn and Ryzhik’s Table of Integrals, Series,

and Products, 6e (New York: Academic Press, 2000), which contains hundreds of pages of

integrals. It should be remembered, however, that integrals do not often occur in exactly
the form listed in a table. Usually we need to use substitution or algebraic manipulation to
transform a given integral into one of the forms in the table.

EXAMPLE T The region bounded by the curves y = arctan x, y = 0, and x = 1 is rotated
about the y-axis. Find the volume of the resulting solid.

SOLUTION Using the method of cylindrical shells, we see that the volume is
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