Activity 7: Adding and Subtracting Fractions

PURPOSE Develop algorithms for adding and subtracting fractions.

MATERIALS Pattern Blocks (pages A-7 to A-11) and Fraction Strips (page A-23)

GROUPING Work individually.

If the yellow hexagon = 1, then the red trapezoid = $\frac{1}{2}$, the blue rhombus = $\frac{1}{3}$, and the green triangle = $\frac{1}{6}$. Use pattern blocks to solve the following:

1.
$$1 \operatorname{red} + 3 \operatorname{green} = 1 \operatorname{red} + 1 \operatorname{red} = 3 \operatorname{green} + 3 \operatorname{green} =$$

$$\frac{1}{2} + \frac{3}{6} = \frac{1}{2} + \frac{1}{2} = \frac{3}{6} + \frac{3}{6} = \frac{\dots}{1}$$

$$\frac{1}{2} + \frac{1}{3} =$$

$$\frac{1}{3} + \frac{1}{6} =$$
 = = = =

$$\frac{1}{2} - \frac{1}{3} = \underline{\qquad} = \underline{\qquad}$$

$$\frac{1}{2} - \frac{1}{6} = \underline{\qquad} = \underline{\qquad} = \underline{\qquad}$$

Use pattern blocks to solve the following problems. Write your answers in simplest form, that is, the number represented by the least number of blocks of the same color.

Let w

1.
$$\frac{1}{2} + \frac{3}{12} =$$

$$2. \quad \frac{3}{4} + \frac{1}{2} + \frac{1}{6} =$$

3.
$$\frac{3}{4} - \frac{2}{3} =$$

4.
$$\frac{5}{6} - \frac{3}{4} =$$

5.
$$\frac{2}{3} + \frac{1}{2} =$$

6.
$$\frac{3}{4} + \frac{2}{3} + \frac{1}{6} =$$

7.
$$1\frac{1}{2} + \frac{2}{3} =$$

8.
$$1\frac{5}{12} - \frac{5}{6} =$$

Activity 8: Multiplying Fractions

PURPOSE Develop an algorithm for multiplying fractions.

MATERIALS Pattern Blocks (pages A-7 to A-11) and paper for folding

GROUPING Work individually.

Example: $\frac{2}{3}$ of $\frac{1}{4}$ means two of three equal parts of $\frac{1}{4}$.

$$\frac{2}{3} \times \frac{1}{4} = \frac{2}{12} = \frac{1}{6}$$

Place pattern blocks on Figure A to solve the following. Record your solution both pictorially and numerically.

1.
$$\frac{1}{2} \times \frac{1}{3} =$$

2.
$$\frac{3}{4} \times \frac{1}{3} =$$

3.
$$\frac{1}{4} \times \frac{1}{3} =$$

4.
$$\frac{3}{4} \times \frac{2}{3} =$$

5.
$$\frac{5}{6} \times \frac{1}{2} =$$

Figure A

Example: $\frac{1}{2}$ of $\frac{2}{3}$ means one of the two equal parts of two thirds.

Use four hexagons to construct a figure similar to the one shown above, and solve the following. Record each step of your solutions both pictorially and numerically.

1.
$$\frac{3}{4} \times \frac{1}{6} =$$

2.
$$\frac{3}{8} \times \frac{2}{3} =$$

3.
$$\frac{7}{12} \times \frac{1}{2} =$$

4.
$$\frac{5}{8} \times \frac{1}{3} =$$

Activity 9: Dividing Fractions

PURPOSE Develop understanding of division of fractions.

MATERIALS Pattern Blocks (pages A-7 to A-11)

GROUPING Work individually.

GETTING STARTED Recall the use of the multiplication and division frame for the

division of whole numbers.

Example: $3\overline{\smash{\big)}\!\!\!\!/} 6$ can mean how many groups of 3 are there in 6? $3\overline{\smash{\big)}\!\!\!/} \pm 3$

In the following example represents 1.

Example: $1 \div \frac{1}{2}$ means: How many groups of $\frac{1}{2}$ are there in 1?

 $\begin{array}{c|c}
?\\
\hline
\hline
1\\
\hline
2
\end{array}$ one

 $\begin{array}{c|c} & & \\ \hline \hline \frac{1}{2} & \overline{\frac{1}{2}} & \overline{\frac{1}{2}} \end{array}$

 $1\div\frac{1}{2}=2$

Complete each sentence and use your pattern blocks to solve the following problems.

1. $\frac{1}{3} \div \frac{1}{6}$ means $\frac{1}{3} \div \frac{1}{6} =$

2. $\frac{1}{2} \div \frac{1}{4} \text{ means}$ $\frac{1}{2} \div \frac{1}{4} =$

3. $\frac{5}{6} \div \frac{5}{12}$ means $\frac{5}{6} \div \frac{5}{12} =$

4. $\frac{3}{4} \div \frac{1}{4}$ means $\frac{3}{4} \div \frac{1}{4} =$

5. $\frac{3}{2} \div \frac{3}{4} \text{ means}$ $\frac{3}{2} \div \frac{3}{4} =$

To model the problem $\frac{1}{2} \div \frac{1}{3}$, let

How many sets of $\frac{1}{3}$ (two blue rhombuses) are there in $\frac{1}{2}$ (one hexagon)?

There is one group of $\frac{1}{3}$ (two blue rhombuses), plus a remainder.

The remainder is equal to one blue rhombus, which is $\frac{1}{2}$ of $\frac{1}{3}$.

Therefore $\frac{1}{2} \div \frac{1}{3} =$ one set of two blue rhombuses + one half set of two blue rhombuses

$$= 1 + \frac{1}{2}$$

$$= 1\frac{1}{2}$$

Use your pattern blocks to solve the following:

1.
$$\frac{5}{6} \div \frac{1}{3} =$$

$$2. \ \frac{3}{4} \div \frac{1}{2} =$$

3.
$$\frac{2}{3} \div \frac{1}{2} =$$

4.
$$1\frac{1}{3} \div \frac{1}{2} =$$

EXTENSIONS

- 1. Describe how you would use fraction strips to solve the previous problems. Draw at least one illustration of your method.
- 2. From what you have observed in this activity, write a rule for division of fractions.