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Abstract and Keywords

Mathematics plays an important role in virtually every scientific effort, no matter what 
part of the world it is aimed at. There is scarcely a natural or a social science that does 
not have substantial mathematics prerequisites. The burden on any complete philosophy 
of mathematics is to show how mathematics is applied to the material world, and to show 
how the methodology of mathematics (whatever it may be) fits into the methodology of 
the sciences (whatever it may be). In addition to its role in science, mathematics itself 
seems to be a knowledge-gathering activity. The philosophy of mathematics is, at least in 
part, a branch of epistemology. However, mathematics is at least prima facie different 
from other epistemic endeavors.
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1. Motivation, or What We Are Up to

From the beginning, Western philosophy has had a fascination with mathematics. The 
entrance to Plato's Academy is said to have been marked with the words “Let no one 
ignorant of geometry enter here.” Some major historical mathematicians, such as René 
Descartes, Gottfried Leibniz, and Blaise Pascal, were also major philosophers. In more 
recent times, there are Bernard Bolzano, Alfred North Whitehead, David Hilbert, Gottlob 
Frege, Alonzo Church, Kurt Gödel, and Alfred Tarski. Until very recently, just about every 
philosopher was aware of the state of mathematics and took it seriously for philosophical 
attention.
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Often, the relationship went beyond fascination. Impressed with the certainty and depth 
of mathematics, Plato made mathematical ontology the model for his Forms, and 
mathematical knowledge the model for knowledge generally—to the extent of 
downplaying or outright neglecting information gleaned from the senses. A similar theme 
reemerged in the dream of traditional rationalists of extending what (p. 4) they took to 
be the methodology of mathematics to all scientific and philosophical knowledge. For 
some rationalists, the goal was to emulate Euclid's Elements of Geometry, providing 
axioms and demonstrations of philosophical principles. Empiricists, the main opponents 
of rationalism, realized that their orientation to knowledge does not seem to make much 
sense of mathematics, and they went to some lengths to accommodate mathematics—
often distorting it beyond recognition (see Parsons [1983, essay 1]).

Mathematics is a central part of our best efforts at knowledge. It plays an important role 
in virtually every scientific effort, no matter what part of the world it is aimed at. There is 
scarcely a natural or a social science that does not have substantial mathematics 
prerequisites. The burden on any complete philosophy of mathematics is to show how 
mathematics is applied to the material world, and to show how the methodology of 
mathematics (whatever it may be) fits into the methodology of the sciences (whatever it
may be). (See chapter 20 in this volume.)

In addition to its role in science, mathematics itself seems to be a knowledge‐gathering 
activity. We speak of what theorems a given person knows and does not know. Thus, the 
philosophy of mathematics is, at least in part, a branch of epistemology. However, 
mathematics is at least prima facie different from other epistemic endeavors. Basic 
mathematical principles, such as “7 + 5 = 12” or “there are infinitely many prime 
numbers,” are sometimes held up as paradigms of necessary truths and, a priori, 
infallible knowledge. It is beyond question that these propositions enjoy a high degree of 
certainty—however this certainty is to be expounded. How can these propositions be 
false? How can any rational being doubt them? Indeed, mathematics seems essential to 
any sort of reasoning at all. Suppose, in the manner of Descartes's first Meditation, that 
one manages to doubt, or pretend to doubt, the basic principles of mathematics. Can he 
go on to think at all?

In these respects, at least, logic is like mathematics. At least some of the basic principles 
of logic are, or seem to be, absolutely necessary and a priori knowable. If one doubts the 
basic principles of logic, then, perhaps by definition, she cannot go on to think coherently 
at all. Prima facie, to think coherently just is to think logically.

Like mathematics, logic has also been a central focus of philosophy, almost from the very 
beginning. Aristotle is still listed among the four or five most influential logicians ever, 
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and logic received attention throughout the ancient and medieval intellectual worlds. 
Today, of course, logic is a thriving branch of both mathematics and philosophy.

It is incumbent on any complete philosophy of mathematics and any complete philosophy 
of logic to account for their at least apparent necessity and apriority. Broadly speaking, 
there are two options. The straightforward way to show that a given discipline appears a 
certain way is to demonstrate that it is that way. Thus the philosopher can articulate the 
notions of necessity and apriority, and then show how they apply to mathematics and/or 
logic. Alternatively, the philosopher can (p. 5) argue that mathematics and/or logic does 
not enjoy these properties. On this option, however, the philosopher still needs to show 
why it appears that mathematics and/or logic is necessary and a priori. She cannot simply 
ignore the long‐standing belief concerning the special status of these disciplines. There 
must be something about mathematics and/or logic that has led so many to hold, perhaps 
mistakenly, that they are necessary and a priori knowable.

The conflict between rationalism and empiricism reflects some tension in the traditional 
views concerning mathematics, if not logic. Mathematics seems necessary and a priori, 
and yet it has something to do with the physical world. How is this possible? How can we 
learn something important about the physical world by a priori reflection in our 
comfortable armchairs? As noted above, mathematics is essential to any scientific 
understanding of the world, and science is empirical if anything is—rationalism 
notwithstanding. Immanuel Kant's thesis that arithmetic and geometry are synthetic a 
priori was a heroic attempt to reconcile these features of mathematics. According to 
Kant, mathematics relates to the forms of ordinary perception in space and time. On this 
view, mathematics applies to the physical world because it concerns the ways that we 
perceive the physical world. Mathematics concerns the underlying structure and 
presuppositions of the natural sciences. This is how mathematics gets “applied.” It is 
necessary because we cannot structure the physical world in any other way. 
Mathematical knowledge is a priori because we can uncover these presuppositions 
without any particular experience (chapter 2 of this volume). This set the stage for over 
two centuries of fruitful philosophy.

2. Global Matters

For any field of study X, the main purposes of the philosophy of X are to interpret X and to 
illuminate the place of X in the overall intellectual enterprise. The philosopher of 
mathematics immediately encounters sweeping issues, typically concerning all of 
mathematics. Most of these questions come from general philosophy: matters of ontology, 
epistemology, and logic. What, if anything, is mathematics about? How is mathematics 
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pursued? Do we know mathematics and, if so, how do we know mathematics? What is the 
methodology of mathematics, and to what extent is this methodology reliable? What is the 
proper logic for mathematics? To what extent are the principles of mathematics objective 
and independent of the mind, language, and social structure of mathematicians? Some 
problems and issues on the agenda of contemporary philosophy have remarkably clean 
formulations when applied to mathematics. Examples include matters of ontology, logic, 
objectivity, knowledge, and mind.

(p. 6)

The philosopher of logic encounters a similar range of issues, with perhaps less emphasis 
on ontology. Given the role of deduction in mathematics, the philosophy of mathematics 
and the philosophy of logic are intertwined, to the point that there is not much use in 
separating them out.

A mathematician who adopts a philosophy of mathematics should gain something by this: 
an orientation toward the work, some insight into the role of mathematics, and at least a 
tentative guide to the direction of mathematics—What sorts of problems are important? 
What questions should be posed? What methodologies are reasonable? What is likely to 
succeed? And so on?

One global issue concerns whether mathematical objects—numbers, points, functions, 
sets—exist and, if they do, whether they are independent of the mathematician, her mind, 
her language, and so on. Define realism in ontology to be the view that at least some 
mathematical objects exist objectively. According to ontological realism, mathematical 
objects are prima facie abstract, acausal, indestructible, eternal, and not part of space 
and time. Since mathematical objects share these properties with Platonic Forms, realism 
in ontology is sometimes called “Platonism.”

Realism in ontology does account for, or at least recapitulate, the necessity of 
mathematics. If the subject matter of mathematics is as these realists say it is, then the 
truths of mathematics are independent of anything contingent about the physical 
universe and anything contingent about the human mind, the community of 
mathematicians, and so on. What of apriority? The connection with Plato might suggest 
the existence of a quasi‐mystical connection between humans and the abstract and 
detached mathematical realm. However, such a connection is denied by most 
contemporary philosophers. As a philosophy of mathematics, “platonism” is often written 
with a lowercase ‘p,’ probably to mark some distance from the master on matters of 
epistemology. Without this quasi‐mystical connection to the mathematical realm, the 
ontological realist is left with a deep epistemic problem. If mathematical objects are in 
fact abstract, and thus causally isolated from the mathematician, then how is it possible 
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for this mathematician to gain knowledge of them? It is close to a piece of incorrigible 
data that we do have at least some mathematical knowledge. If the realist in ontology is 
correct, how is this possible?

Georg Kreisel is often credited with shifting attention from the existence of mathematical 
objects to the objectivity of mathematical truth. Define realism in truth‐value to be the 
view that mathematical statements have objective truth‐values independent of the minds, 
languages, conventions, and such of mathematicians. The opposition to this view is anti‐
realism in truth‐value, the thesis that if mathematical statements have truth‐values at all, 
these truth‐values are dependent on the mathematician.

There is a prima facie alliance between realism in truth‐value and realism in ontology. 
Realism in truth‐value is an attempt to develop a view that mathematics (p. 7) deals with 
objective features of the world. Accordingly, mathematics has the objectivity of a science. 
Mathematical (and everyday) discourse has variables that range over numbers, and 
numerals are singular terms. Realism in ontology is just the view that this discourse is to 
be taken at face value. Singular terms denote objects, and thus numerals denote 
numbers. According to our two realisms, mathematicians mean what they say, and most 
of what they say is true. In short, realism in ontology is the default or the first guess of 
the realist in truth‐value.

Nevertheless, a survey of the recent literature reveals that there is no consensus on the 
logical connections between the two realist theses or their negations. Each of the four 
possible positions is articulated and defended by established philosophers of 
mathematics. There are thorough realists (Gödel [1944, 1964], Crispin Wright [1983] and
chapter 6 in this volume, Penelope Maddy [1990], Michael Resnik [1997], Shapiro [1997]); 
thorough anti‐realists (Michael Dummett [1973, 1977]) realists in truth‐value who are 
anti‐realists in ontology (Geoffrey Hellman [1989] and chapter 17 in this volume, Charles
Chihara [1990] and chapter 15 in this volume); and realists in ontology who are anti‐
realists in truth‐value (Neil Tennant [1987, 1997]).

A closely related matter concerns the relationship between philosophy of mathematics 
and the practice of mathematics. In recent history, there have been disputes concerning 
some principles and inferences within mathematics. One example is the law of excluded 
middle, the principle that for every sentence, either it or its negation is true. In symbols:
A∨¬A. For a second example, a definition is impredicative if it refers to a class that 
contains the object being defined. The usual definition of “the least upper bound” is 
impredicative because it defines a particular upper bound by referring to the set of all 
upper bounds. Such principles have been criticized on philosophical grounds, typically by 
anti‐realists in ontology. For example, if mathematical objects are mental constructions 



Philosophy of Mathematics and Its Logic: Introduction

Page 6 of 30

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights 
Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in 
Oxford Handbooks Online for personal use (for details see Privacy Policy).

Subscriber: California State University Fresno; date: 08 May 2016

or creations, then impredicative definitions are circular. One cannot create or construct 
an object by referring to a class of objects that already contains the item being created or 
constructed. Realists defended the principles. On that view, a definition does not 
represent a recipe for creating or constructing a mathematical object. Rather, a definition 
is a characterization or description of an object that already exists. For a realist in 
ontology, there is nothing illicit in definitions that refer to classes containing the item in 
question (see Gödel [1944]). Characterizing “the least upper bound” of a set is no 
different from defining the “elder poop” to be “the oldest member of the Faculty.”

As far as contemporary mathematics is concerned, the aforementioned disputes are over, 
for the most part. The law of excluded middle and impredicative definitions are central 
items in the mathematician's toolbox—to the extent that many practitioners are not aware 
when these items have been invoked. But this battle was not fought and won on 
philosophical grounds. Mathematicians did not temporarily don philosophical hats and 
decide that numbers, say, really do (p. 8) exist independent of the mathematician and, 
for that reason, decide that it is acceptable to engage in the once disputed 
methodologies. If anything, the dialectic went in the opposite direction, from 
mathematics to philosophy. The practices in question were found to be conducive to the 
practice of mathematics, as mathematics—and thus to the sciences (but see chapters 9,
10, and 19 in this volume).

There is nevertheless a rich and growing research program to see just how much 
mathematics can be obtained if the restrictions are enforced (chapter 19 in this volume). 
The research is valuable in its own right, as a study of the logical power of the various 
once questionable principles. The results are also used to support the underlying 
philosophies of mathematics and logic.

3. Local Matters

The issues and questions mentioned above concern all of mathematics and, in some 
cases, all of science. The contemporary philosopher of mathematics has some more 
narrow foci as well. One group of issues concerns attempts to interpret specific 
mathematical or scientific results. Many examples come from mathematical logic, and 
engage issues in the philosophy of logic. The compactness theorem and the Löwenheim–
Skolem theorems entail that if a first‐order theory has an infinite model at all, then it has 
a model of every infinite cardinality. Thus, there are unintended, denumerable models of 
set theory and real analysis. This is despite the fact that we can prove in set theory that 
the “universe” is uncountable. Arithmetic, the theory of the natural numbers, has 
uncountable models—despite the fact that by definition a set is countable if and only if it 
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is not larger than the set of natural numbers. What, if anything, do these results say 
about the human ability to characterize and communicate various concepts, such as 
notions of cardinality? Skolem (e.g., [1922, 1941]) himself took the results to confirm his 
view that virtually all mathematical notions are “relative” in some sense. No set is 
countable or finite simpliciter, but only countable or finite relative to some domain or 
model. Hilary Putnam [1980] espouses a similar relativity. Other philosophers resist the 
relativity, sometimes by insisting that first‐order model theory does not capture the 
semantics of informal mathematical discourse. This issue may have ramifications 
concerning the proper logic for mathematics. Perhaps the limitative theorems are an 
artifact of an incorrect logic (chapters 25 and 26 in this volume).

The wealth of independence results in set theory provide another batch of issues for the 
philosopher. It turns out that many interesting and important mathematical questions are 
independent of the basic assertions of set theory. One example is Cantor's continuum 
hypothesis that there are no sets that are strictly (p. 9) larger than the set of natural 
numbers and strictly smaller than the set of real numbers. Neither the continuum 
hypothesis nor its negation can be proved in the standard axiomatizations of set theory. 
What does this independence say about mathematical concepts? Do we have another sort 
of relativity on offer? Can we only say that a given set is the size of a certain cardinality 
relative to an interpretation of set theory? Some philosophers hold that these results 
indicate an indeterminacy concerning mathematical truth. There is no fact of the matter 
concerning, say, the continuum hypothesis. These philosophers are thus anti‐realists in 
truth‐value. The issue here has ramifications concerning the practice of mathematics. If 
one holds that the continuum hypothesis has a determinate truth‐value, he or she may 
devote effort to determining this truth‐value. If, instead, someone holds that the 
continuum hypothesis does not have a determinate truth‐value, then he is free to adopt it 
or not, based on what makes for the most convenient set theory. It is not clear whether 
the criteria that the realist might adopt to decide the continuum hypothesis are different 
from the criteria the anti‐realist would use for determining what makes for the most 
convenient theory.

A third example is Gödel's incompleteness theorem that the set of arithmetic truths is not 
effective. Some take this result to refute mechanism, the thesis that the human mind 
operates like a machine. Gödel himself held that either the mind is not a machine or there 
are arithmetic questions that are “absolutely undecidable,” questions that are 
unanswerable by us humans (see Gödel [1951], Shapiro [1998]). On the other hand, Webb 
[1980] takes the incompleteness results to support mechanism.

To some extent, some questions concerning the applications of mathematics are among 
this group of issues. What can a theorem of mathematics tell us about the natural world 
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studied in science? To what extent can we prove things about knots, bridge stability, 
chess endgames, and economic trends? There are (or were) philosophers who take 
mathematics to be no more than a meaningless game played with symbols (chapter 8 in 
this volume), but everyone else holds that mathematics has some sort of meaning. What 
is this meaning, and how does it relate to the meaning of ordinary nonmathematical 
discourse? What can a theorem tell us about the physical world, about human 
knowability, about the abilities‐in‐principle of programmed computers, and so on?

Another group of issues consists of attempts to articulate and interpret particular 
mathematical theories and concepts. One example is the foundational work in arithmetic 
and analysis. Sometimes, this sort of activity has ramifications for mathematics itself, and 
thus challenges and blurs the boundary between mathematics and its philosophy. 
Interesting and powerful research techniques are often suggested by foundational work 
that forges connections between mathematical fields. In addition to mathematical logic, 
consider the embedding of the natural numbers in the complex plane, via analytic number 
theory. Foundational activity has spawned whole branches of mathematics.

(p. 10)

Sometimes developments within mathematics lead to unclarity concerning what a certain 
concept is. The example developed in Lakatos [1976] is a case in point. A series of “proofs 
and refutations” left interesting and important questions over what a polyhedron is. For 
another example, work leading to the foundations of analysis led mathematicians to focus 
on just what a function is, ultimately yielding the modern notion of function as arbitrary 
correspondence. The questions are at least partly ontological.

This group of issues underscores the interpretive nature of philosophy of mathematics. 
We need to figure out what a given mathematical concept is, and what a stretch of 
mathematical discourse says. The Lakatos study, for example, begins with a “proof” 
consisting of a thought experiment in which one removes a face of a given polyhedron, 
stretches the remainder out on a flat surface, and then draws lines, cuts, and removes the 
various parts—keeping certain tallies along the way. It is not clear a priori how this 
blatantly dynamic discourse is to be understood. What is the logical form of the discourse 
and what is its logic? What is its ontology? Much of the subsequent mathematical/
philosophical work addresses just these questions.

Similarly, can one tell from surface grammar alone that an expression like “dx” is not a 
singular term denoting a mathematical object, while in some circumstances, “dy/dx” does 
denote something—but the denoted item is a function, not a quotient? The history of 
analysis shows a long and tortuous task of showing just what expressions like this mean.
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Of course, mathematics can often go on quite well without this interpretive work, and 
sometimes the interpretive work is premature and is a distraction at best. Berkeley's 
famous, penetrating critique of analysis was largely ignored among mathematicians—so 
long as they knew “how to go on,” as Ludwig Wittgenstein might put it. In the present 
context, the question is whether the mathematician must stop mathematics until he has a 
semantics for his discourse fully worked out. Surely not. On occasion, however, tensions 
within mathematics lead to the interpretive philosophical/semantic enterprise. 
Sometimes, the mathematician is not sure how to “go on as before,” nor is he sure just 
what the concepts are. Moreover, we are never certain that the interpretive project is 
accurate and complete, and that other problems are not lurking ahead.

4. A Potpourri of Positions

I now present sketches of some main positions in the philosophy of mathematics. The list 
is not exhaustive, nor does the coverage do justice to the subtle and deep work of 
proponents of each view. Nevertheless, I hope it serves as a useful (p. 11) guide to both 
the chapters that follow and to at least some of the literature in contemporary philosophy 
of mathematics. Of course, the reader should not hold the advocates of the views to the 
particular articulation that I give here, especially if the articulation sounds too 
implausible to be advocated by any sane thinker.

4.1. Logicism: a Matter of Meaning

According to Alberto Coffa [1991], a major item on the agenda of Western philosophy 
throughout the nineteenth century was to account for the (at least) apparent necessity 
and a priori nature of mathematics and logic, and to account for the applications of 
mathematics, without invoking anything like Kantian intuition. According to Coffa, the 
most fruitful development on this was the “semantic tradition,” running through the work 
of Bolzano, Frege, the early Wittgenstein, and culminating with the Vienna Circle. The 
main theme—or insight, if you will—was to locate the source of necessity and a priori 
knowledge in the use of language. Philosophers thus turned their attention to linguistic 
matters concerning the pursuit of mathematics. What do mathematical assertions mean? 
What is their logical form? What is the best semantics for mathematical language? The 
members of the semantic tradition developed and honed many of the tools and concepts 
still in use today in mathematical logic, and in Western philosophy generally. Michael 
Dummett calls this trend in the history of philosophy the linguistic turn.
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An important program of the semantic tradition was to show that at least some basic 
principles of mathematics are analytic, in the sense that the propositions are true in 
virtue of meaning. Once we understood terms like “natural number,” “successor 
function,” “addition,” and “multiplication,” we would thereby see that the basic principles 
of arithmetic, such as the Peano postulates, are true. If the program could be carried out, 
it would show that mathematical truth is necessary—to the extent that analytic truth, so 
construed, is necessary. Given what the words mean, mathematical propositions have to 
be true, independent of any contingencies in the material world. And mathematical 
knowledge is a priori—to the extent that knowledge of meanings is a priori. Presumably, 
speakers of the language know the meanings of words a priori, and thus we know 
mathematical propositions a priori.

The most articulate version of this program is logicism, the view that at least some 
mathematical propositions are true in virtue of their logical forms (chapter 5 in this 
volume). According to the logicist, arithmetic truth, for example, is a species of logical 
truth. The most detailed developments are those of Frege [1884, 1893] and Alfred North
Whitehead and Bertrand Russell [1910]. Unlike Russell, Frege was a realist in ontology, 
in that he took the natural numbers to be objects. Thus, for Frege at least, logic has an 
ontology—there are “logical objects.”

(p. 12)

In a first attempt to define the general notion of cardinal number, Frege [1884, §63]
proposed the following principle, which has become known as “Hume's principle”:

For any concepts F, G, the number of F's is identical to the number of G's if and 
only if F and G are equinumerous.

Two concepts are equinumerous if they can be put in one‐to‐one correspondence. Frege 
showed how to define equinumerosity without invoking natural numbers. His definition is 
easily cast in what is today recognized as pure second‐order logic. If second‐order logic is 
logic (chapter 25 in this volume), then Frege succeeded in reducing Hume's principle, at 
least, to logic.

Nevertheless, Frege balked at taking Hume's principle as the ultimate foundation for 
arithmetic because Hume's principle only fixes identities of the form “the number of F's = 
the number of G's.” The principle does not determine the truth‐value of sentences in the 
form “the number of F's = t,” where t is an arbitrary singular term. This became known as 
the Caesar problem. It is not that anyone would confuse a natural number with the 
Roman general Julius Caesar, but the underlying idea is that we have not succeeded in 
characterizing the natural numbers as objects unless and until we can determine how and 
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why any given natural number is the same as or different from any object whatsoever. 
The distinctness of numbers and human beings should be a consequence of the theory, 
and not just a matter of intuition.

Frege went on to provide explicit definitions of individual natural numbers, and of the 
concept “natural number,” in terms of extensions of concepts. The number 2, for example, 
is the extension (or collection) of all concepts that hold of exactly two elements. The 
inconsistency in Frege's theory of extensions, as shown by Russell's paradox, marked a 
tragic end to Frege's logicist program.

Russell and Whitehead [1910] traced the inconsistency in Frege's system to the 
impredicativity in his theory of extensions (and, for that matter, in Hume's principle). 
They sought to develop mathematics on a safer, predicative foundation. Their system 
proved to be too weak, and ad hoc adjustments were made, greatly reducing the 
attraction of the program. There is a thriving research program under way to see how 
much mathematics can be recovered on a predicative basis (chapter 19 in this volume).

Variations of Frege's original approach are vigorously pursued today in the work of
Crispin Wright, beginning with [1983], and others like Bob Hale [1987] and Neil Tennant 
([1987, 1997]) (chapter 6 in this volume). The idea is to bypass the treatment of 
extensions and to work with (fully impredicative) Hume's principle, or something like it, 
directly. Hume's principle is consistent with second‐order logic if second‐order arithmetic 
is consistent (see Boolos [1987] and Hodes [1984]), so at least the program will not fall 
apart like Frege's did. But what is the philosophical point? On the neologicist approach, 
Hume's principle is taken to (p. 13) be an explanation of the concept of “number.” 
Advocates of the program argue that even if Hume's principle is not itself analytic—true 
in virtue of meaning—it can become known a priori, once one has acquired a grasp of the 
concept of cardinal number. Hume's principle is akin to an implicit definition. Frege's 
own technical development shows that the Peano postulates can be derived from Hume's 
principle in a standard, higher‐order logic. Indeed, the only essential use that Frege made 
of extensions was to derive Hume's principle—everything else concerning numbers 
follows from that. Thus the basic propositions of arithmetic enjoy the same privileged 
epistemic status had by Hume's principle (assuming that second‐order deduction 
preserves this status). Neologicism is a reconstructive program showing how arithmetic 
propositions can become known.

The neologicist (and Fregean) development makes essential use of the fact that 
impredicativity of Hume's principle is impredicative in the sense that the variable F in the 
locution “the number of F's” is instantiated with concepts that themselves are defined in 
terms of numbers. Without this feature, the derivation of the Peano axioms from Hume's 
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principle would fail. This impredicativity is consonant with the ontological realism 
adopted by Frege and his neologicist followers. Indeed, the neologicist holds that the left‐
hand side of an instance of Hume's principle has the same truth conditions as its right‐
hand side, but the left‐hand side gives the proper logical form. Locutions like “the 
number of F's” are genuine singular terms denoting numbers.

The neologicist project, as developed thus far, only applies basic arithmetic and the 
natural numbers. An important item on the agenda is to extend the treatment to cover 
other areas of mathematics, such as real analysis, functional analysis, geometry, and set 
theory. The program involves the search for abstraction principles rich enough to 
characterize more powerful mathematical theories (see, e.g., Hale [2000a, 2000b] and 
Shapiro [2000a, 2003]).

4.2. Empiricism, Naturalism, and Indispensability

Coffa [1982] provides a brief historical sketch of the semantic tradition, outlining its aims 
and accomplishments. Its final sentence is “And then came Quine.” Despite the continued 
pursuit of variants of logicism (chapter 26 in this volume), the standard concepts 
underlying the program are in a state of ill repute in some quarters, notably much of 
North America. Many philosophers no longer pay serious attention to notions of meaning, 
analyticity, and a priori knowledge. To be precise, such notions are not given a primary 
role in the epistemology of mathematics, or anything else for that matter, by many 
contemporary philosophers. W. V. O. Quine (e.g., [1951, 1960]) is usually credited with 
initiating widespread skepticism concerning these erstwhile philosophical staples.

(p. 14)

Quine, of course, does not deny that the truth‐value of a given sentence is determined by 
both the use of language and the way the world is. To know that “Paris is in France,” one 
must know something about the use of the words “Paris,” “is,” and “France,” and one 
must know some geography. Quine's view is that the linguistic and factual components of 
a given sentence cannot be sharply distinguished, and thus there is no determinate 
notion of a sentence being true solely in virtue of language (analytic), as opposed to a 
sentence whose truth depends on the way the world is (synthetic).

Then how is mathematics known? Quine is a thoroughgoing empiricist, in the tradition of 
John Stuart Mill (chapter 3 in this volume). His positive view is that all of our beliefs 
constitute a seamless web answerable to, and only to, sensory stimulation. There is no 
difference in kind between mundane beliefs about material objects, the far reaches of 
esoteric science, mathematics, logic, and even so‐called truths‐by‐definition (e.g., “no 
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bachelor is married”). The word “seamless” in Quine's metaphor suggests that everything 
in the web is logically connected to everything else in the web, at least in principle. 
Moreover, no part of the web is knowable a priori.

This picture gives rise to a now common argument for realism. Quine and others, such as
Putnam [1971], propose a hypothetical‐deductive epistemology for mathematics. Their 
argument begins with the observation that virtually all of science is formulated in 
mathematical terms. Thus, mathematics is “confirmed” to the extent that science is. 
Because mathematics is indispensable for science, and science is well confirmed and 
(approximately) true, mathematics is well confirmed and true as well. This is sometimes 
called the indispensability argument.

Thus, Quine and Putnam are realists in truth‐value, holding that some statements of 
mathematics have objective and nonvacuous truth‐values independent of the language, 
mind, and form of life of the mathematician and scientist (assuming that science enjoys 
this objectivity). Quine, at least, is also a realist in ontology. He accepts the Fregean (and 
neologicist) view that “existence” is univocal. There is no ground for distinguishing terms 
that refer to medium‐sized physical objects, terms that refer to microscopic and 
submicroscopic physical objects, and terms that refer to numbers. According to Quine 
and Putnam, all of the items in our ontology—apples, baseballs, electrons, and numbers—
are theoretical posits. We accept the existence of all and only those items that occur in 
our best accounts of the material universe. Despite the fact that numbers and functions 
are not located in space and time, we know about numbers and functions the same way 
we know about physical objects—via the role of terms referring to such entities in 
mature, well‐confirmed theories.

Indispensability arguments are anathema to those, like the logicists, logical positivists, 
and neologicists, who maintain the traditional views that mathematics is absolutely 
necessary and/or analytic and/or knowable a priori. On such views, mathematical 
knowledge cannot be dependent on anything as blatantly (p. 15) empirical and 
contingent as everyday discourse and natural science. The noble science of mathematics 
is independent of all of that. From the opposing Quinean perspective, mathematics and 
logic do not enjoy the necessity traditionally believed to hold of them; and mathematics 
and logic are not knowable a priori.

Indeed, for Quine, nothing is knowable a priori. The thesis is that everything in the web—
the mundane beliefs about the physical world, the scientific theories, the mathematics, 
the logic, the connections of meaning—is up for revision if the “data” become sufficiently 
recalcitrant. From this perspective, mathematics is of a piece with highly confirmed 
scientific theories, such as the fundamental laws of gravitation. Mathematics appears to 
be necessary and a priori knowable (only) because it lies at the “center” of the web of 
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belief, farthest from direct observation. Since mathematics permeates the web of belief, 
the scientist is least likely to suggest revisions in mathematics in light of recalcitrant 
“data.” That is to say, because mathematics is invoked in virtually every science, its 
rejection is extremely unlikely, but the rejection of mathematics cannot be ruled out in 
principle. No belief is incorrigible. No knowledge is a priori, all knowledge is ultimately 
based on experience (see Colyvan [2001], and chapter 12 in this volume).

The seamless web is of a piece with Quine's naturalism, characterized as “the 
abandonment of first philosophy” and “the recognition that it is within science itself … 
that reality is to be identified and described” ([1981, p. 72]). The idea is to see philosophy 
as continuous with the sciences, not prior to them in any epistemological or foundational 
sense. If anything, the naturalist holds that science is prior to philosophy. Naturalized 
epistemology is the application of this theme to the study of knowledge. The philosopher 
sees the human knower as a thoroughly natural being within the physical universe. Any 
faculty that the philosopher invokes to explain knowledge must involve only natural 
processes amenable to ordinary scientific scrutiny.

Naturalized epistemology exacerbates the standard epistemic problems with realism in 
ontology. The challenge is to show how a physical being in a physical universe can come 
to know about abstracta like mathematical objects (see Field [1989, essay 7]). Since 
abstract objects are causally inert, we do not observe them but, nevertheless, we still 
(seem to) know something about them. The Quinean meets this challenge with claims 
about the role of mathematics in science. Articulations of the Quinean picture thus 
should, but usually do not, provide a careful explanation of the application of 
mathematics to science, rather than just noting the existence of this applicability (chapter 
20 in this volume). This explanation would shed light on the abstract, non‐spatiotemporal 
nature of mathematical objects, and the relationships between such objects and ordinary 
and scientific material objects. How is it that talk of numbers and functions can shed light 
on tables, bridge stability, and market stability? Such an analysis would go a long way 
toward defending the Quinean picture of a web of belief.

(p. 16)

Once again, it is a central tenet of the naturalistically minded philosopher that there is no 
first philosophy that stands prior to science, ready to either justify or criticize it. Science 
guides philosophy, not the other way around. There is no agreement among naturalists 
that the same goes for mathematics. Quine himself accepts mathematics (as true) only to 
the extent that it is applied in the sciences. In particular, he does not accept the basic 
assertions of higher set theory because they do not, at present, have any empirical 
applications. Moreover, he advises mathematicians to conform their practice to his 
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version of naturalism by adopting a weaker and less interesting, but better understood, 
set theory than the one they prefer to work with.

Mathematicians themselves do not follow the epistemology suggested by the Quinean 
picture. They do not look for confirmation in science before publishing their results in 
mathematics journals, or before claiming that their theorems are true. Thus, Quine's 
picture does not account for mathematics as practiced. Some philosophers, such as
Burgess [1983] and Maddy [1990, 1997], apply naturalism to mathematics directly, and 
thereby declare that mathematics is, and ought to be, insulated from much traditional 
philosophical inquiry, or any other probes that are not to be resolved by mathematicians 
qua mathematicians. On such views, philosophy of mathematics—naturalist or otherwise
—should not be in the business of either justifying or criticizing mathematics (chapters 13
and 14 in this volume).

4.3. No Mathematical Objects

The most popular way to reject realism in ontology is to flat out deny that mathematics 
has a subject matter. The nominalist argues that there are no numbers, points, functions, 
sets, and so on. The burden on advocates of such views is to make sense of mathematics 
and its applications without assuming a mathematical ontology. This is indicated in the 
title of Burgess and Rosen's study of nominalism, A Subject with No Object [1997].

A variation on this theme that played an important role in the history of our subject is
formalism. An extreme version of this view, which is sometimes called “game formalism,” 
holds that the essence of mathematics is the following of meaningless rules. Mathematics 
is likened to the play of a game like chess, where characters written on paper play the 
role of pieces to be moved. All that matters to the pursuit of mathematics is that the rules 
have been followed correctly. As far as the philosophical perspective is concerned, the 
formulas may as well be meaningless.

Opponents of game formalism claim that mathematics is inherently informal and perhaps 
even nonmechanical. Mathematical language has meaning, and it is a gross distortion to 
attempt to ignore this. At best, formalism focuses on a small (p. 17) aspect of 
mathematics, the fact that logical consequence is formal. It deliberately leaves aside what 
is essential to the enterprise.

A different formalist philosophy of mathematics was presented by Haskell Curry (e.g., 
[1958]). The program depends on a historical thesis that as a branch of mathematics 
develops, it becomes more and more rigorous in its methodology, the end result being the 
codification of the branch in formal deductive systems. Curry claimed that assertions of a 
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mature mathematical theory are to be construed not so much as the results of moves in a 
particular formal deductive system (as a game formalist might say), but rather as 
assertions about a formal system. An assertion at the end of a research paper would be 
understood in the form “such and such is a theorem in this formal system.” For Curry, 
then, mathematics is an objective science, and it has a subject matter—formal systems. In 
effect, mathematics is metamathematics. (See chapter 8 in this volume for a more 
developed account of formalism.)

On the contemporary scene, one prominent version of nominalism is fictionalism, as 
developed, for example, by Hartry Field [1980]. Numbers, points, and sets have the same 
philosophical status as the entities presented in works of fiction. According to the 
fictionalist, the number 6 is the same kind of thing as Dr. Watson or Miss Marple.

According to Field, mathematical language should be understood at face value. Its 
assertions have vacuous truth‐values. For example, “all natural numbers are prime” 
comes out true, since there are no natural numbers. Similarly, “there is a prime number 
greater than 10” is false, and both Fermat's last theorem and the Goldbach conjecture 
are true. Of course, Field does not exhort mathematicians to settle their open questions 
via this vacuity. Unlike Quine, Field has no proposals for changing the methodology of 
mathematics. His view concerns how the results of mathematics should be interpreted, 
and the role of these results in the scientific enterprise. For Field, the goal of 
mathematics is not to assert the true. The only mathematical knowledge that matters is 
knowledge of logical consequences (see Field [1984]).

Field regards the Quine/Putnam indispensability argument to be the only serious 
consideration in favor of ontological realism. His overall orientation is thus broadly 
Quinean—in direct opposition to the long‐standing belief that mathematical knowledge is 
a priori. As we have seen, more traditional philosophers—and most mathematicians—
regard indispensability as irrelevant to mathematical knowledge. In contrast, for thinkers 
like Field, once one has undermined the indispensability argument, there is no longer any 
serious reason to believe in the existence of mathematical objects.

Call a scientific theory “nominalistic” if it is free of mathematical presuppositions. As 
Quine and Putnam pointed out, most of the theories developed in scientific practice are 
not nominalistic, and so begins the indispensability argument. The first aspect of Field's 
program is to develop nominalistic versions of (p. 18) various scientific theories. Of 
course, Field does not do this for every prominent scientific theory. To do so, he would 
have to understand every prominent scientific theory, a task that no human can 
accomplish anymore. Field gives one example—Newtonian gravitational theory—in some 
detail, to illustrate a technique that can supposedly be extended to other scientific work.
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The second aspect of Field's program is to show that the nominalistic theories are 
sufficient for attaining the scientific goal of determining truths about the physical 
universe (i.e., accounting for observations). Let P be a nominalistic scientific theory and 
let S be a mathematical theory together with some “bridge principles” that connect the 
mathematical terminology with the physical terminology. Define S to be conservative
over P if for any sentence Φ in the language of the nominalistic theory, if Φ is a 
consequence of P + S, then Φ is a consequence of P alone. Thus, if the mathematical 
theory is conservative over the nominalist one, then any physical consequence we get via 
the mathematics we could get from the nominalistic physics alone. This would show that 
mathematics is dispensable in principle, even if it is practically necessary. Field shows 
that standard mathematical theories and bridge principles are conservative over his 
nominalistic Newtonian theory, at least if the conservativeness is understood in model‐
theoretic terms: if Φ holds in all models of P + S, then Φ holds in all models of P.

The sizable philosophical literature generated by Field [1980] includes arguments that 
Field's technique does not generalize to more contemporary theories like quantum 
mechanics (Malament [1982]); arguments that Field's distinction between abstract and 
concrete does not stand up, or that it does not play the role needed to sustain Field's 
fictionalism (Resnik [1985]); and arguments that Field's nominalistic theories are not 
conservative in the philosophically relevant sense (Shapiro [1983]). The collection by
Field [1989] contains replies to some of these objections.

Another common anti‐realist proposal is to reconstrue mathematical assertions in modal
terms. The philosopher understands mathematical assertions to be about what is 
possible, or about what would be the case if objects of a certain sort existed. The main 
innovation in Chihara [1990] is a modal primitive, a “constructibility quantifier.” If Φ is a 
formula and x a certain type of variable, then Chihara's system contains a formula that 
reads “it is possible to construct an x such that Φ.” According to Chihara, constructibility 
quantifiers do not mark what Quine calls “ontological commitment.” Common sense 
supports this—to the extent that the notion of ontological commitment is part of common 
sense. If someone says that it is possible to construct a new ballpark in Boston, she is not 
asserting the existence of any ballpark, nor is she asserting the existence of a strange 
entity called a “possible ballpark.” She only speaks of what it is possible to do.

The formal language developed in Chihara [1990] includes variables that range over open 
sentences (i.e., sentences with free variables), and these open‐sentence variables can be 
bound by constructibility quantifiers. With keen attention to detail, (p. 19) Chihara 
develops arithmetic, analysis, functional analysis, and so on in his system, following the 
parallel development of these mathematical fields in simple (impredicative) type theory.
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Unlike Field, Chihara is a realist in truth‐value. He holds that the relevant modal 
statements have objective and nonvacuous truth‐values that hold or fail independent of 
the mind, language, conventions, and such of the mathematical community. Mathematics 
comes out objective, even if it has no ontology. Chihara's program shows initial promise 
on the epistemic front. Perhaps it is easier to account for how the mathematician comes 
to know about what is possible, or about what sentences can be constructed, than it is to 
account for how the mathematician knows about a Platonic realm of objects. (See
chapters 15 and 16 in this volume.)

4.4. Intuitionism

Unlike fictionalists, traditional intuitionists, such as L. E. J. Brouwer (e.g., [1912, 1948]) 
and Arend Heyting (e.g., [1930, 1956]), held that mathematics has a subject matter: 
mathematical objects, such as numbers, do exist. However, Brouwer and Heyting insisted 
that these objects are mind‐dependent. Natural numbers and real numbers are mental 
constructions or are the result of mental constructions. In mathematics, to exist is to be 
constructed. Thus Brouwer and Heyting are anti‐realists in ontology, denying the
objective existence of mathematical objects. Some of their writing seems to imply that 
each person constructs his own mathematical realm. Communication between 
mathematicians consists in exchanging notes about their individual constructive 
activities. This would make mathematics subjective. It is more common, however, for 
these intuitionists, especially Brouwer, to hold that mathematics concerns the forms of 
mental construction as such (see Posy [1984]). This follows a Kantian theme, reviving the 
thesis that mathematics is synthetic a priori.

This perspective has consequences concerning the proper practice of mathematics. Most 
notably, the intuitionist demurs from the law of excluded middle—(A∨¬A)—and other 
inferences based on it. According to Brouwer and Heyting, these methodological 
principles are symptomatic of faith in the transcendental existence of mathematical 
objects and/or the transcendental truth of mathematical statements. For the intuitionist, 
every mathematical assertion must correspond to a construction. For example, let P be a 
property of natural numbers. For an intuitionist, the content of the assertion that not 
every number has the property P—the formula ¬∀xPx—is that it is refutable that one can 
find a construction showing that P holds of each number. The content of the assertion 
that there is a number for which P fails—∃x ¬Px—is that one can construct a number x
and (p. 20) show that P does not hold of x. The latter formula cannot be inferred from the 
former because, clearly, it is possible to show that a property cannot hold universally 
without constructing a number for which it fails. In contrast, from the realist's 
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perspective, the content of ¬∀xPx is simply that it is false that P holds universally, and ∃x 
¬Px means that there is a number for which P fails. Both formulas refer to numbers 
themselves; neither has anything to do with the knowledge‐gathering abilities of 
mathematicians, or any other mental feature of them. From the realist's point of view, the 
two formulas are equivalent. The inference from ¬∀xPx to ∃x ¬Px is a direct consequence 
of excluded middle.

Some contemporary intuitionists, such as Michael Dummett ([1973, 1977]) and Neil 
Tennant ([1987, 1997]), take a different route to roughly the same revisionist conclusion. 
Their proposed logic is similar to that of Brouwer and Heyting, but their supporting 
arguments and philosophy are different. Dummett begins with reflections on language 
acquisition and use, and the role of language in communication. One who understands a 
sentence must grasp its meaning, and one who learns a sentence thereby learns its 
meaning. As Dummett puts it, “a model of meaning is a model of understanding.” This at 
least suggests that the meaning of a statement is somehow determined by its use. 
Someone who understands the meaning of any sentence of a language must be able to 
manifest that understanding in behavior. Since language is an instrument of 
communication, an individual cannot communicate what he cannot be observed to 
communicate.

Dummett argues that there is a natural route from this “manifestation requirement” to 
what we call here anti‐realism in truth‐value, and a route from there to the rejection of 
classical logic—and thus a demand for major revisions in mathematics.

Most semantic theories are compositional in the sense that the semantic content of a 
compound statement is analyzed in terms of the semantic content of its parts. Tarskian 
semantics, for example, is compositional, because the satisfaction of a complex formula is 
defined in terms of the satisfaction of its subformulas. Dummett's proposal is that the 
lessons of the manifestation requirement be incorporated into a compositional semantics. 
Instead of providing satisfaction conditions of each formula, Dummett proposes that the 
proper semantics supplies proof or computation conditions. He thus adopts what has been 
called “Heyting semantics.” Here are three clauses:

A proof of a formula in the form Φ ∨ Ψ is a proof of Φ or a proof of Ψ.

A proof of a formula in the form Φ → Ψ is a procedure that can be proved to 
transform any proof of Φ into a proof of Ψ.

A proof of a formula in the form ¬Φ is a procedure that can be proved to 
transform any proof of Φ into a proof of absurdity; a proof of ¬Φ is a proof that 
there can be no proof of Φ.
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(p. 21)

Heyting and Dummett argue that on a semantics like this, the law of excluded middle is 
not universally upheld. A proof of a sentence of the form Φ ∨¬Φ consists of a proof of Φ or 
a proof that there can be no proof of Φ. The intuitionist claims that one cannot maintain 
this disjunction, in advance, for every sentence Φ.

A large body of research in mathematical logic shows how intuitionistic mathematics 
differs from its classical counterpart. Many mathematicians hold that the intuitionistic 
restrictions would cripple their discipline (see, e.g., Paul Bernays [1935]). For some 
philosophers of mathematics, the revision of mathematics is too high a price to pay. If a 
philosophy entails that there is something wrong with what the mathematicians do, then 
the philosophy is rejected out of hand. According to them, intuitionism can be safely 
ignored. A less dogmatic approach would be to take Dummett's arguments as a challenge 
to answer the criticisms he brings. Dummett argues that classical logic, and mathematics 
as practiced, do not enjoy a certain kind of justification, a justification one might think a 
logic and mathematics ought to have. Perhaps a defender of classical mathematics, such 
as a Quinean holist or a Maddy‐style naturalist, can concede this, but argue that logic and 
mathematics do not need this kind of justification. We leave the debate at this juncture. 
(See chapters 9 and 10 in this volume.)

4.5. Structuralism

According to another popular philosophy of mathematics, the subject matter of 
arithmetic, for example, is the pattern common to any infinite system of objects that has a 
distinguished initial object, and a successor relation or operation that satisfies the 
induction principle. The arabic numerals exemplify this natural number structure, as do 
sequences of characters on a finite alphabet in lexical order, an infinite sequence of 
distinct moments of time, and so on. A natural number, such as 6, is a place in the natural 
number structure, the seventh place (if the structure starts with zero). Similarly, real 
analysis is about the real number structure, set theory is about the set‐theoretic 
hierarchy structure, topology is about topological structures, and so on.

According to the structuralist, the application of mathematics to science occurs, in part, 
by discovering or postulating that certain structures are exemplified in the material 
world. Mathematics is to material reality as pattern is to patterned. Since a structure is a 
one‐over‐many of sorts, a structure is like a traditional universal, or property.

There are several ontological views concerning structures, corresponding roughly to 
traditional views concerning universals. One is that the natural number structure, for 
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example, exists independent of whether it has instances in the (p. 22) physical world—or 

any other world, for that matter. Let us call this ante rem structuralism, after the 
analogous view concerning universals (see Shapiro [1997] and Resnik [1997]; see also
Parsons [1990]). Another view is that there is no more to the natural number structure 
than the systems of objects that exemplify this structure. Destroy the systems, and the 
structure goes with them. From this perspective, either structures do not exist at all—in 
which case we have a version of nominalism—or the existence of structures is tied to the 
existence of their “instances,” the systems that exemplify the structures. Views like this 
are sometimes dubbed eliminative structuralism (see Benacerraf [1965]).

According to ante rem structuralism, statements of mathematics are understood at face 
value. An apparent singular term, such as “2,” is a genuine singular term, denoting a 
place in the natural number structure. For the eliminative structuralist, by contrast, these 
apparent singular terms are actually bound variables. For example, “2 + 3 = 5” comes to 
something like “in any natural number system S, any object in the 2‐place of S that is S‐
added to the object in the 3‐place of S is the object in the 5‐place of S.” Eliminative 
structuralism is a structuralism without structures.

Taken at face value, eliminative structuralism requires a large ontology to keep 
mathematics from being vacuous. For example, if there are only finitely many objects in 
the universe, then the natural number structure is not exemplified, and thus universally 
quantified statements of arithmetic are all vacuously true. Real and complex analysis and 
Euclidean geometry require a continuum of objects, and set theory requires a proper 
class (or at least an inaccessible cardinal number) of objects. For the ante rem
structuralist, the structures themselves, and the places in the structures, provide the 
“ontology.”

Benacerraf [1965], an early advocate of eliminative structuralism, made much of the fact 
that the set‐theoretic hierarchy contains many exemplifications of the natural number 
structure. He concluded from this that numbers are not objects. This conclusion, 
however, depends on what it is to be an object—an interesting philosophical question in 
its own right. The ante rem structuralist readily accommodates the multiple realizability 
of the natural number structure: some items in the set‐theoretic hierarchy, construed as 
objects, are organized into systems, and some of these systems exemplify the natural 
number structure. That is, ante rem structuralism accounts for the fact that mathematical 
structures are exemplified by other mathematical objects. Indeed, the natural number 
structure is exemplified by various systems of natural numbers, such as the even numbers 
and the prime numbers. From the ante rem perspective, this is straightforward: the 
natural numbers, as places in the natural number structure, exist. Some of them are 
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organized into systems, and some of these systems exemplify the natural number 
structure.

On the ante rem view, the main epistemological question becomes: How do we know 
about structures? On the eliminative versions, the question is: How do (p. 23) we know 
about what holds in all systems of a certain type? Structuralists have developed several 
strategies for resolving the epistemic problems. The psychological mechanism of pattern 
recognition may be invoked for at least small, finite structures. By encountering instances 
of a given pattern, we obtain knowledge of the pattern itself. More sophisticated 
structures are apprehended via a Quine‐style postulation (Resnik), and more robust forms 
of abstraction and implicit definition (Shapiro).

None of the structuralisms invoked so far provide for a reduction of the ontological 
burden of mathematics. The ontology of ante rem structuralism is as large and extensive 
as that of traditional realism in ontology. Indeed, ante rem structuralism is a realism in 
ontology. Only the nature of the ontology is in question. Eliminative structuralism also 
requires a large ontology to keep the various branches of mathematics from lapsing into 
vacuity. Surely there are not enough physical objects to keep structuralism from being 
vacuous when it comes to functional analysis or set theory. Thus, eliminative 
structuralism requires a large ontology of nonconcrete objects, and so it is not consistent 
with ontological anti‐realism.

Hellman's [1989] modal structuralism is a variation of the underlying theme of eliminative 
structuralism which opts for a thorough ontological anti‐realism. Instead of asserting that 
arithmetic is about all systems of a certain type, the modal structuralist says that 
arithmetic is about all possible systems of that type. A sum like “2 + 3 = 5” comes to “in 
any possible natural number system S, any object in the 2‐place of S that is S‐added to the 
object in the 3‐place of S is the object in the 5‐place of S” or “necessarily, in any natural 
number system S, any object in the 2‐place of S that is S‐added to the object in the 3‐place 
of S is the object in the 5‐place of S.” The modal structuralist agrees with the eliminative 
structuralist that apparent singular terms, such as numerals, are disguised bound 
variables, but for the modal structuralist these variables occur inside the scope of a 
modal operator.

The modal structuralist faces an attenuated threat of vacuity similar to that of the 
eliminative structuralist. Instead of asserting that there are systems satisfying the natural 
number structure, for example, the modalist needs to affirm that such systems are 
possible. The key issue here is to articulate the underlying modality. (See chapters 17 and
18 in this volume.)
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5. Logic

The above survey broached a number of issues concerning logic and the philosophy of 
logic. The debate over intuitionism invokes the general validity, within mathematics, of 
the law of excluded middle and other inferences based on it (p. 24) (chapters 9– 11 in this 
volume), and questions concerning impredicativity emerged from a version of logicism.

There is traffic in the other direction as well, from logic to the philosophy of mathematics. 
Perhaps the primary issue in the philosophy of logic concerns the nature, or natures, of 
logical consequence. There is, first, a deductive notion of consequence: a proposition Φ 
follows from a set Γ of propositions if Φ can be justified fully on the basis of the members 
of Γ. This is often understood in terms of a chain of legitimate, gap‐free inferences that 
leads from members of Γ to Φ. A similar, perhaps identical, idea underlies Frege's 
development of logic in defense of logicism, and occurs also in neologicism. To show that 
a given mathematical proposition is knowable a priori and independent of intuition, we 
have to give a gap‐free proof of it. There is also a semantic, model‐theoretic notion of 
consequence: Φ follows from Γ if Φ is true in every interpretation (or model) of the 
language in which the members of Γ are true. Deductive systems introduced in logic 
books capture, or model, the deductive notion of consequence, and model‐theoretic 
semantics captures, or tries to capture, the semantic notion.

There are substantial philosophical issues concerning the legitimacy of the model‐
theoretic notion of consequence and over which, if either, of the notions is primary. Of 
course, the resolution of these issues depends on prior questions concerning the nature 
of logic and the goals of logical study (chapters 21 and 22 in this volume). If both notions 
of consequence are legitimate, we can ask about relations between them. Surely it must 
be the case that if a proposition Φ follows deductively from a set Γ, then Φ is true under 
every interpretation of the language in which Γ is true. If not, then there is a chain of 
legitimate, gap‐free inferences that can take us from truth to falsehood. Perish the 
thought. However, the converse seems less crucial. It may well be that there is a 
semantically valid argument whose conclusion cannot be deduced from its premises.

Issues surrounding higher‐order logic, which were also broached briefly in the foregoing 
survey, turn on matters relating to the nature(s) of logical consequence. Second‐order 
logic is inherently incomplete, in the sense that there is no effective deductive system 
that is both sound and complete for it. Does this disqualify it as logic, or is there some 
role for second‐order logic to play? What does this say about the underlying nature of 
mathematics? (See chapters 25 and 26 in this volume).
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Finally, there is a tradition, dating back to antiquity and very much alive today, that 
maintains that a proposition Φ cannot be a logical consequence of a set Γ unless Φ is 
somehow relevant to Γ. On the contemporary scene, the main targets of relevance logic 
are the so‐called paradoxes of implication. One of these is the thesis that a logical truth 
follows from any set of premises whatsoever, and another is ex falso quodlibet, the thesis 
that any conclusion follows from a contradiction. The extent to which such inferences 
occur in mathematics is itself a subject of debate (chapters 23 and 24 in this volume.)

(p. 25)
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