CALCULUS
Chapter 8 ESs=.

Sequences and
Infinite Series
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8.4

The Divergence and
Integral Tests
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THEOREM 8.8 Divergence Test
If X a, converges, then 11m a, = 0. Equivalently, if lim a, # 0, then the series
diverges. e
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Figure 8.25
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n S,, n S,

10° ~7.49 10 =23.60
10 ~9.79 10" =46.63
10° =12.09 10 =69.65
10 =14.39 10" =92.68
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Figure 8.26
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Figure 8.27

YA |
Y= The sum of the areas of the rectangles
1s greater than the area under the curve
LT y=1/xfromx=1tox=n+ 1:
n+1
dx
s> A
X
]
11
2
2 1 I l
3 1 / n
I I I I I I I I I >
0 1 2 3 4 5 n n+1 X

ALWAYS LEARNING Copyright © 2015, 2011 Pearson Education, Inc. P EA RS O N




THEOREM 8.9 Harmonic Series

s e A 1 1
The harmonic series 2 —=1+ -+ =
i=1k 2 3

the terms of the series approach zero.

+ - - - diverges—even though
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THEOREM 8.10 Integral Test
Suppose [ is a continuous, positive, decreasing function, for x = 1, and let

a, = f(k),fork = 1,2,3,....Then

iak and /f(x)dx
1

k=1

either both converge or both diverge. In the case of convergence, the value of the
integral is not equal to the value of the series.
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Figure 8.28
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THEOREM 8.1 1 Convergence of the p-Series

|
The p-series E — converges for p > 1 and diverges for p = 1.

I\—l

ALWAYS LEARNING Copyright © 2015, 2011 Pearson Education, Inc. PEARSON 11




Figure 8.29
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Figure 8.30
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THEOREM 8.12 Estimating Series with Positive Terms
Let f be a continuous, positive, decreasing function, for x = 1, and let a, = f(k),

0 0]

fork =1,2,3,....LetS = > a;be aconvergent series and let S, = > a; be
=1 =i

the sum of the first n terms of the series. The remainder R, = § — §,, satisfies

R < / If(x) dx.

Furthermore, the exact value of the series is bounded as follows:

oo

S. + f(x)dx < iak £ 8.+ / filx) dx.

n+1 k=1

ALWAYS LEARNING Copyright © 2015, 2011 Pearson Education, Inc. PEARSON 14




Figure 8.31 (a)
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Figure 8.31 (b)
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THEOREM 8.13 Properties of Convergent Series

1. Suppose Xa,; converges to A and c is a real number. The series X ca; con-
verges, and X.ca, = cXa; = CA.

2. Suppose Xa, converges to A and X b, converges to B. The series > (a;, = by)
converges, and X (a;, * b)) = Xa;, £ 2b, = A £ B.

3. If M is a positive integer, then 2 a; and 2 a, either both converge or both
(=1 k=M
diverge. In general, whether a series converges does not depend on a finite

number of terms added to or removed from the series. However, the value of a
convergent series does change if nonzero terms are added or removed.
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