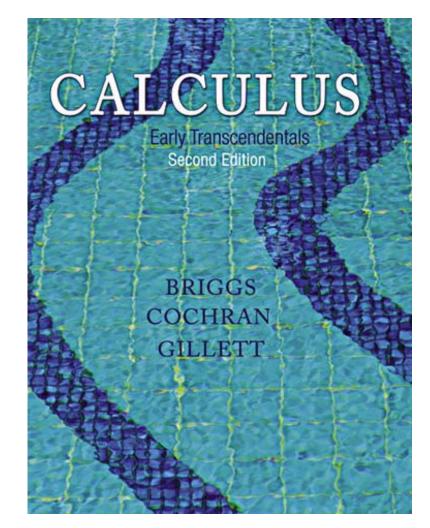
Chapter 8

Sequences and Infinite Series



ALWAYS LEARNING

Copyright © 2015, 2011 Pearson Education, Inc.

The Divergence and Integral Tests

ALWAYS LEARNING

Copyright © 2015, 2011 Pearson Education, Inc.

THEOREM 8.8 Divergence Test

If $\sum a_k$ converges, then $\lim_{k \to \infty} a_k = 0$. Equivalently, if $\lim_{k \to \infty} a_k \neq 0$, then the series diverges.

ALWAYS LEARNING

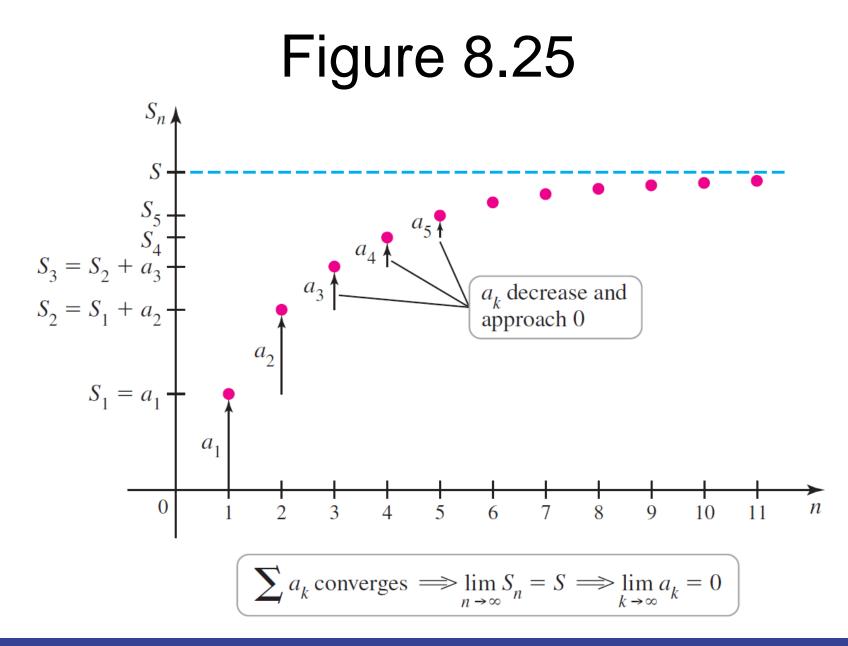
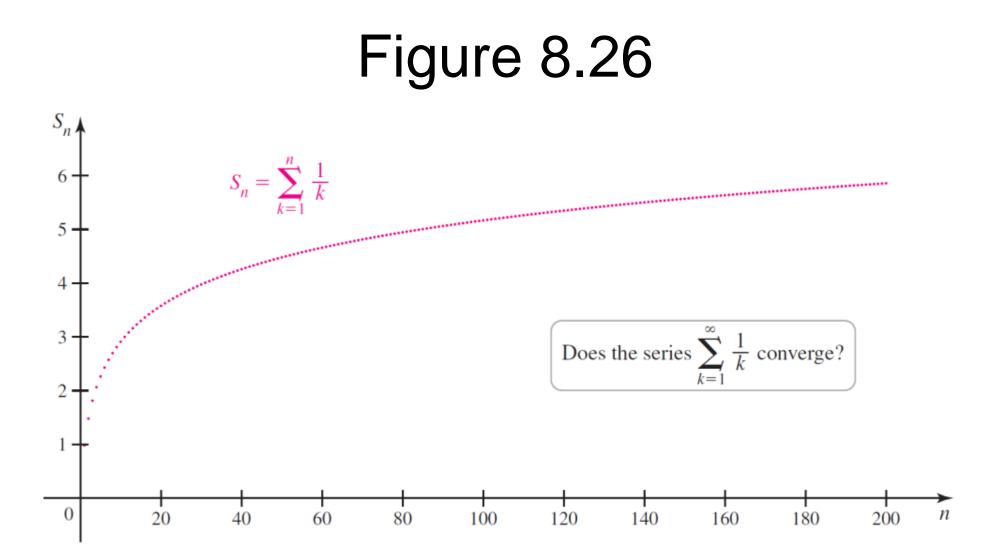
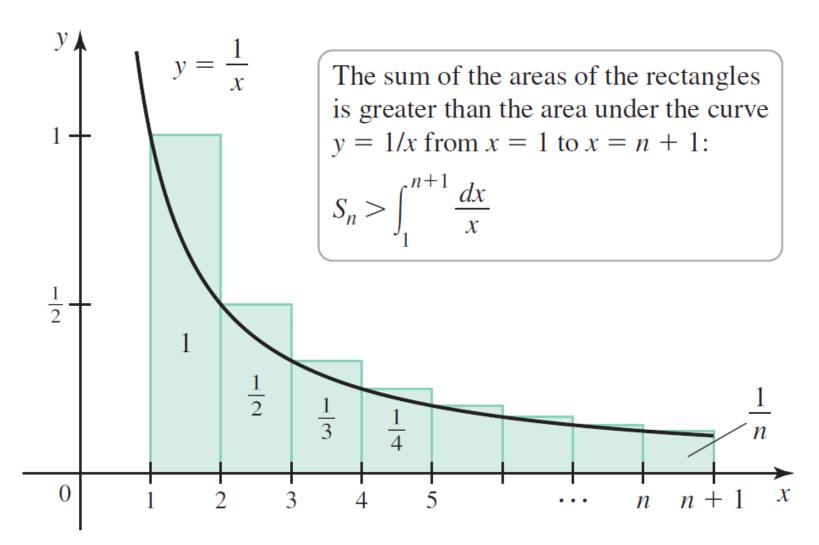


Table 8.3

n	S _n	n	S _n
10 ³	\approx 7.49	10^{10}	≈23.60
10^{4}	≈ 9.79	10^{20}	≈46.63
10^{5}	≈12.09	10^{30}	≈ <u>69.65</u>
10^{6}	≈14.39	10^{40}	≈92.68





ALWAYS LEARNING

THEOREM 8.9 Harmonic Series The harmonic series $\sum_{k=1}^{\infty} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \cdots$ diverges—even though

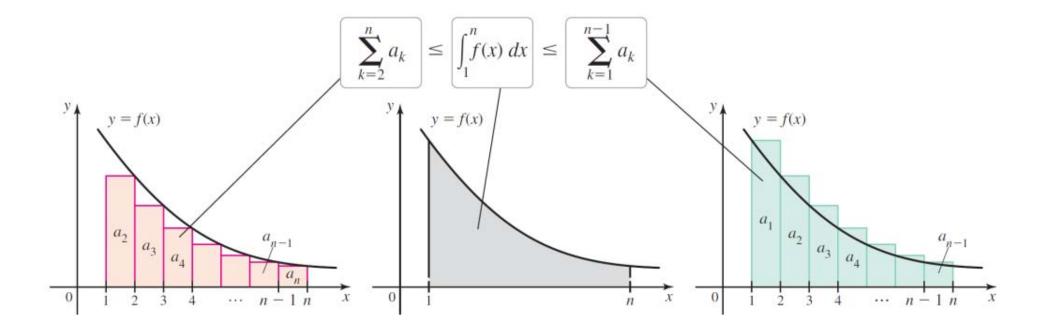
the terms of the series approach zero.

THEOREM 8.10 Integral Test

Suppose *f* is a continuous, positive, decreasing function, for $x \ge 1$, and let $a_k = f(k)$, for k = 1, 2, 3, ... Then

$$\sum_{k=1}^{\infty} a_k$$
 and $\int_1^{\infty} f(x) dx$

either both converge or both diverge. In the case of convergence, the value of the integral is *not* equal to the value of the series.

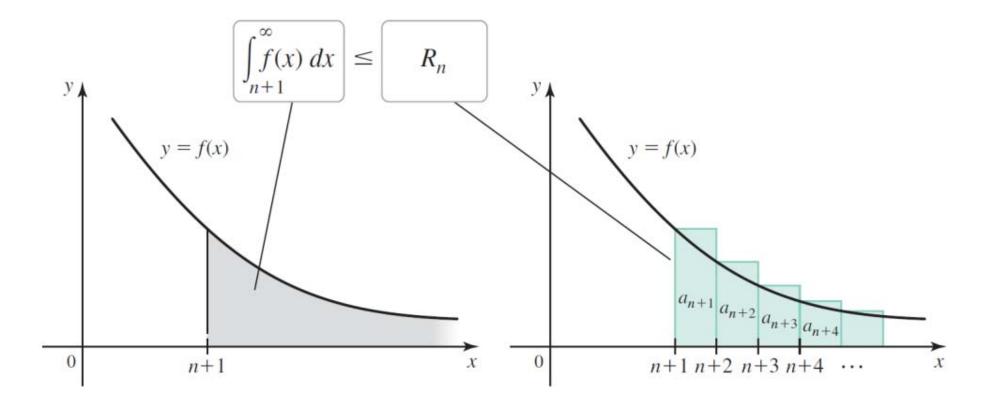


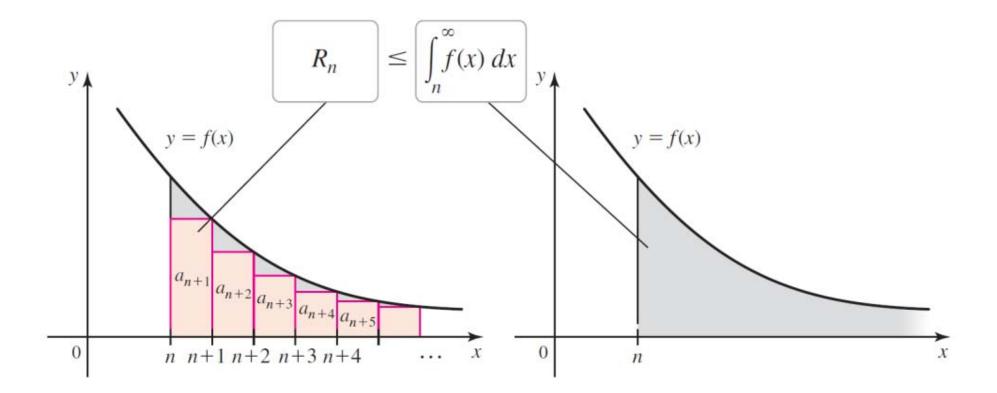
Copyright © 2015, 2011 Pearson Education, Inc.

THEOREM 8.11 Convergence of the *p*-Series The *p*-series $\sum_{k=1}^{\infty} \frac{1}{k^p}$ converges for p > 1 and diverges for $p \le 1$.

ALWAYS LEARNING

Copyright © 2015, 2011 Pearson Education, Inc.





THEOREM 8.12 Estimating Series with Positive Terms

Let *f* be a continuous, positive, decreasing function, for $x \ge 1$, and let $a_k = f(k)$, for $k = 1, 2, 3, \ldots$. Let $S = \sum_{k=1}^{\infty} a_k$ be a convergent series and let $S_n = \sum_{k=1}^{n} a_k$ be

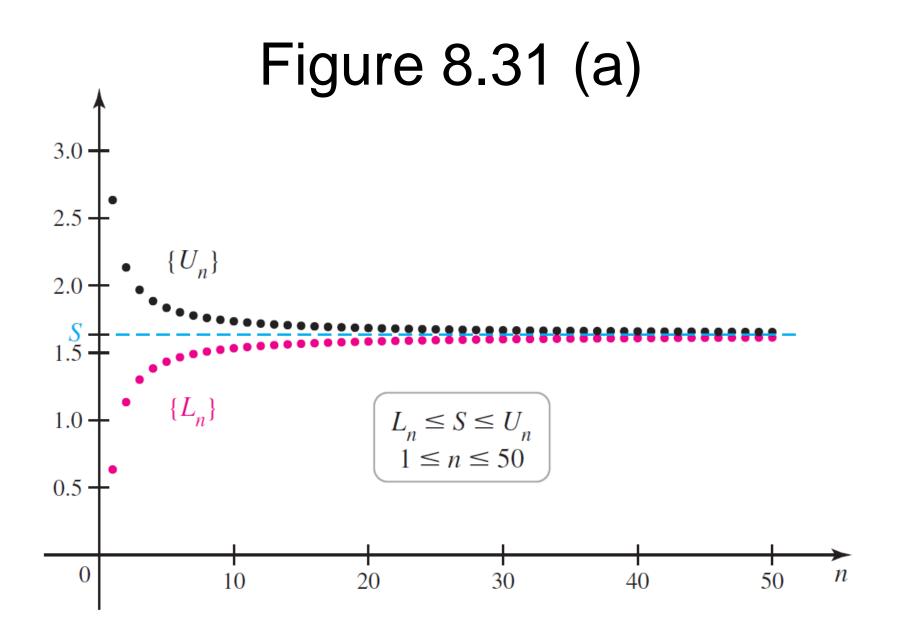
the sum of the first *n* terms of the series. The remainder $R_n = S - S_n$ satisfies

$$R_n < \int_n^\infty f(x) \, dx.$$

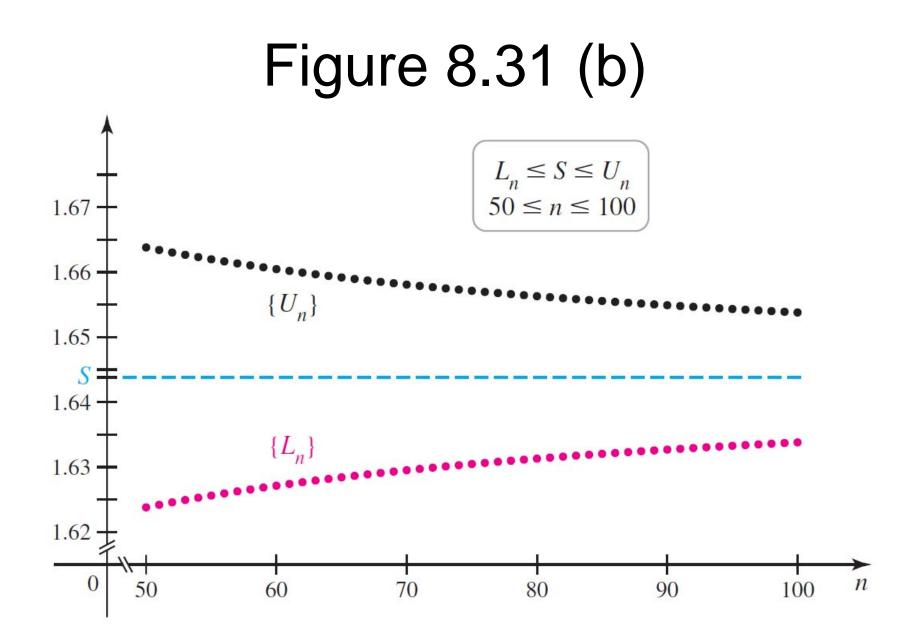
Furthermore, the exact value of the series is bounded as follows:

$$S_n + \int_{n+1}^{\infty} f(x) dx < \sum_{k=1}^{\infty} a_k < S_n + \int_n^{\infty} f(x) dx.$$

ALWAYS LEARNING



ALWAYS LEARNING



ALWAYS LEARNING

Copyright © 2015, 2011 Pearson Education, Inc.

THEOREM 8.13 Properties of Convergent Series

- **1.** Suppose $\sum a_k$ converges to *A* and *c* is a real number. The series $\sum ca_k$ converges, and $\sum ca_k = c \sum a_k = cA$.
- 2. Suppose $\sum a_k$ converges to A and $\sum b_k$ converges to B. The series $\sum (a_k \pm b_k)$ converges, and $\sum (a_k \pm b_k) = \sum a_k \pm \sum b_k = A \pm B$.
- **3.** If *M* is a positive integer, then $\sum_{k=1}^{n} a_k$ and $\sum_{k=M}^{n} a_k$ either both converge or both diverge. In general, *whether* a series converges does not depend on a finite number of terms added to or removed from the series. However, the *value* of a convergent series does change if nonzero terms are added or removed.