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Alternating Series
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THEOREM 8.18 Alternating Series Test
The alternating series > (—1)""'a, converges provided

1. the terms of the series are nonincreasing in magnitude (0 < a; | = a, for k
greater than some index N) and

2. lim a, = 0.
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Figure 8.35
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THEOREM 8.19 Alternating Harmonic Series
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converges (even though the harmonic series E E L = > + 3 + 1 + 5 + .-

diverges).
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Figure 8.36
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THEOREM 8.20 Remainder in Alternating Series

Let D> (—1)*"'a; be a convergent alternating series with terms that are
i=1

nonincreasing in magnitude. Let R, = § — §,, be the remainder in approximating
the value of that series by the sum of its first # terms. Then |R,| = a,,, . In other
words, the magnitude of the remainder is less than or equal to the magnitude of the
first neglected term.
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DEFINITION Absolute and Conditional Convergence
If E | ay | converges, then EQk converges absolutely. If 2 |a, | diverges and
2 a, converges, then E a,; converges conditionally.
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THEOREM 8.21 Absolute Convergence Implies Convergence
If > |a,| converges, then Xa, converges (absolute convergence implies conver-
gence). Equivalently, if X a, diverges, then X |a,| diverges.
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Figure 8.37
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Series or Test

Geometric series

Divergence Test

Integral Test

p-series

Ratio Test

Root Test
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Table 8.4

Form of Series

Eark,a # 0
=0

-
>, a
k=1

> ay, where a; = f(k)
F=1

and [ is continuous,
positive, and decreasing

“ o1

k

-
Eak, where a; > 0
k=1

®
Eak, where a; = 0
=1

Condition for
Convergence

lr| <1

Does not apply

/ f(x) dx converges.
/1

p > 1

A+

lim <1
k—x (,‘[k

Ak
Allm\/a:<1

(1 of 2)

Condition for

Divergence
lr] =1
lima, # 0
k—co
/f(x)dxdiverges.
J1
p=1
ay
lim ——— > |
k—x ak

lim Va; > 1

k—

Copyright © 2015, 2011 Pearson Education, Inc.

Comments

If [#| < L then > ar*
=0

Cannot be used to prove
convergence

The value of the integral

1

is

not the value of the series.

Usetul for comparison tests

R €
Inconclusive if lim
k—o0 ak

|

gt Ak
Inconclusive if lim \/ch =1
k—
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Table 8.4 (2 of 2)

Condition for Condition for
Series or Test Form of Series Convergence Divergence Comments
Comparison Test Eak, where a; > 0 0 < a; = b;and Ebk 0 < b, = a; and Eak is given; you supply Ebk.
=l converges. =1 = , =l k=l
z by diverges
=1
i : - . dy .y - T
Limit Comparison Test Eak, where 0= lim — < % and lim — > 0 and ZGk 1S given;
k=1 k=% Oy k% k=1
a > 0,b > 0 = <, S
s ¢ Ebk converges. Ebk diverges. you supply sz~
k=1 k=1 =1
Alternating Series Test 2 (—1 )k ay, where klim a, =0 klim ap = 0 Remainder R, satisfies
A (—> 0 —>00
=l |Rn| = Apy
ak>0,0<ak+|£ak
Absolute Convergence E day, ay arbitrary E |ay| converges Applies to arbitrary series
=1 =1
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