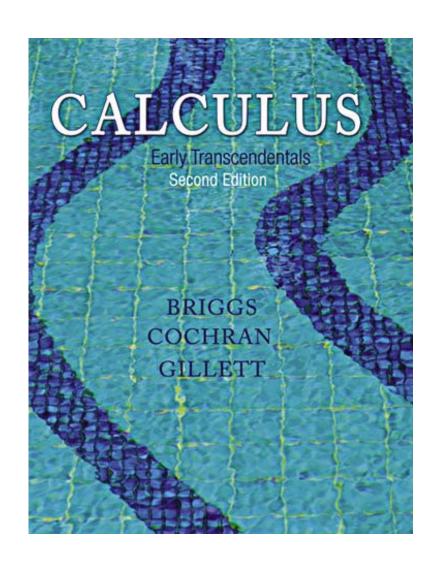
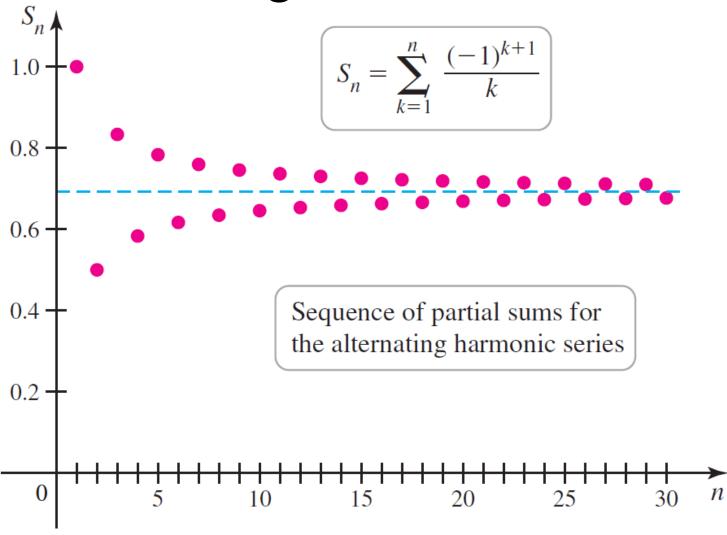
Chapter 8

Sequences and Infinite Series



8.6

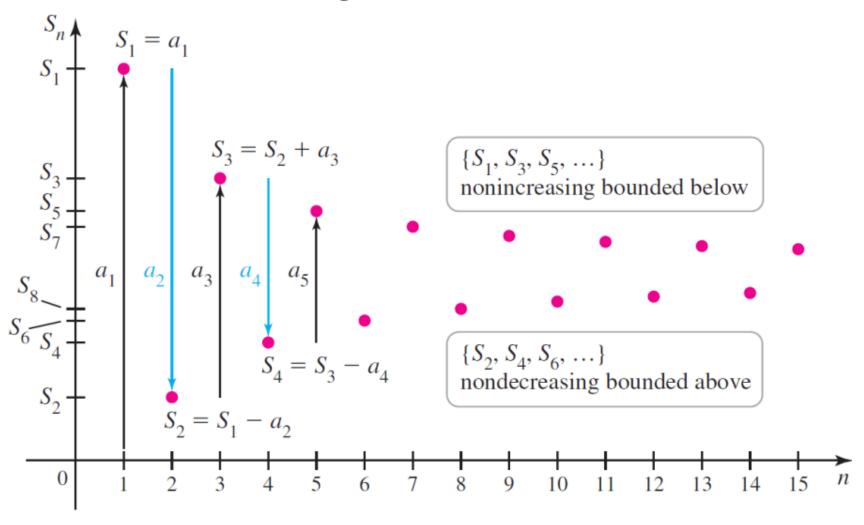
Alternating Series



THEOREM 8.18 Alternating Series Test

The alternating series $\sum (-1)^{k+1} a_k$ converges provided

- 1. the terms of the series are nonincreasing in magnitude $(0 < a_{k+1} \le a_k$, for k greater than some index N) and
- $2. \lim_{k\to\infty} a_k = 0.$

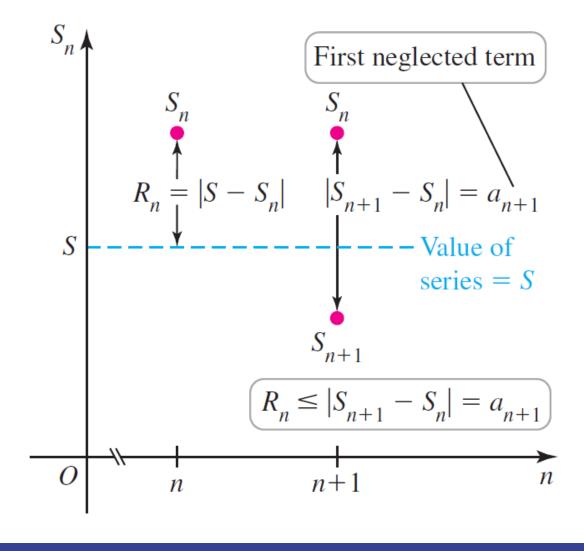


THEOREM 8.19 Alternating Harmonic Series

The alternating harmonic series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \cdots$

converges (even though the harmonic series $\sum_{k=1}^{\infty} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \cdots$

diverges).



THEOREM 8.20 Remainder in Alternating Series

Let $\sum_{k=1}^{\infty} (-1)^{k+1} a_k$ be a convergent alternating series with terms that are

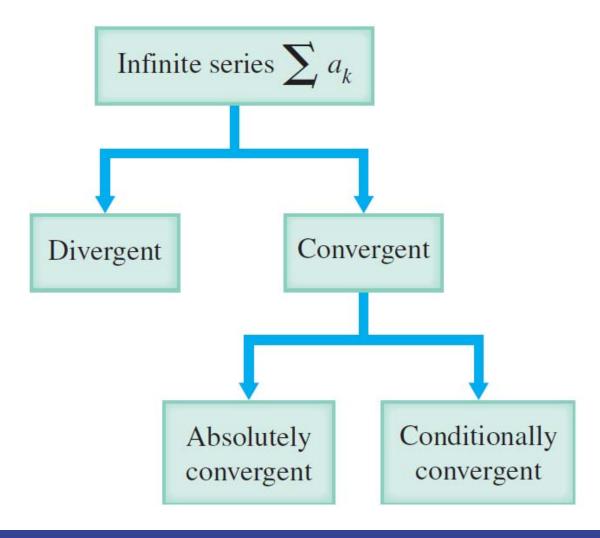
nonincreasing in magnitude. Let $R_n = S - S_n$ be the remainder in approximating the value of that series by the sum of its first n terms. Then $|R_n| \le a_{n+1}$. In other words, the magnitude of the remainder is less than or equal to the magnitude of the first neglected term.

DEFINITION Absolute and Conditional Convergence

If $\sum |a_k|$ converges, then $\sum a_k$ converges absolutely. If $\sum |a_k|$ diverges and $\sum a_k$ converges, then $\sum a_k$ converges conditionally.

THEOREM 8.21 Absolute Convergence Implies Convergence

If $\sum |a_k|$ converges, then $\sum a_k$ converges (absolute convergence implies convergence). Equivalently, if $\sum a_k$ diverges, then $\sum |a_k|$ diverges.



ALWAYS LEARNING

Table 8.4 (1 of 2)

Series or Test	Form of Series	Condition for Convergence	Condition for Divergence	Comments
Geometric series	$\sum_{k=0}^{\infty} ar^k, a \neq 0$	r < 1	$ r \ge 1$	If $ r < 1$, then $\sum_{k=0}^{\infty} ar^k = \frac{a}{1-r}$.
Divergence Test	$\sum_{k=1}^{\infty} a_k$	Does not apply	$\lim_{k \to \infty} a_k \neq 0$	Cannot be used to prove convergence
Integral Test	$\sum_{k=1}^{\infty} a_k$, where $a_k = f(k)$ and f is continuous, positive, and decreasing	$\int_{1}^{\infty} f(x) dx \text{ converges.}$	$\int_{1}^{\infty} f(x) dx \text{ diverges.}$	The value of the integral is not the value of the series.
<i>p</i> -series	$\sum_{k=1}^{\infty} \frac{1}{k^p}$	p > 1	$p \leq 1$	Useful for comparison tests
Ratio Test	$\sum_{k=1}^{\infty} a_k$, where $a_k > 0$	$\lim_{k\to\infty}\frac{a_{k+1}}{a_k}<1$	$\lim_{k\to\infty}\frac{a_{k+1}}{a_k}>1$	Inconclusive if $\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = 1$
Root Test	$\sum_{k=1}^{\infty} a_k, \text{ where } a_k \ge 0$	$\lim_{k\to\infty}\sqrt[k]{a_k}<1$	$\lim_{k\to\infty} \sqrt[k]{a_k} > 1$	Inconclusive if $\lim_{k \to \infty} \sqrt[k]{a_k} = 1$

Table 8.4 (2 of 2)

Series or Test	Form of Series	Condition for Convergence	Condition for Divergence	Comments
Comparison Test	$\sum_{k=1}^{\infty} a_k, \text{ where } a_k > 0$	$0 < a_k \le b_k$ and $\sum_{k=1}^{\infty} b_k$ converges.	$0 < b_k \le a_k$ and $\sum_{k=1}^{\infty} b_k$ diverges	$\sum_{k=1}^{\infty} a_k \text{ is given; you supply } \sum_{k=1}^{\infty} b_k.$
Limit Comparison Test	$\sum_{k=1}^{\infty} a_k$, where $a_k > 0, b_k > 0$	$0 \le \lim_{k \to \infty} \frac{a_k}{b_k} < \infty \text{ and}$ $\sum_{k=1}^{\infty} b_k \text{ converges.}$	$\lim_{k \to \infty} \frac{a_k}{b_k} > 0 \text{ and}$ $\sum_{k=1}^{\infty} b_k \text{ diverges.}$	$\sum_{k=1}^{\infty} a_k \text{ is given;}$ you supply $\sum_{k=1}^{\infty} b_k.$
Alternating Series Test	$\sum_{k=1}^{\infty} (-1)^k a_k, \text{ where} a_k > 0, 0 < a_{k+1} \le a_k$	$\lim_{k\to\infty}a_k=0$	$\lim_{k\to\infty}a_k\neq 0$	Remainder R_n satisfies $ R_n \le a_{n+1}$
Absolute Convergence	$\sum_{k=1}^{\infty} a_k, \ a_k \text{ arbitrary}$	$\sum_{k=1}^{\infty} a_k \text{ converges}$		Applies to arbitrary series