
Page 230: problem 7
Here is a solution. You might want the return from interrupt to make this process be
Ready instead of Running.

Page 281, Problem 6

RR scheduling with a time quantum of 15

a. Gantt chart

0 15 30 45 60 75 85 100 115 130 140 145 160 175 190 205
p0 p1 p2 p0 p1 p2 p3 p4 p0 p1 p3 p4 p0 p4 p0

b. Turnaround time for p3 = 65
c. Average wait time

 W(p_0) = 0
 W(p_1) = 5
 W(p_2) = 20
 W(p_3) = 5
 W(p_4) = 15
 Average = (0+5+20+5+15)/5 = 9

Running

Ready

Blocked
For Interrupt

Blocked
forReuseable

Blocked for
Consumable

request

done

schedule/dispatch
preempt

request request

request

allocate

allocate

interrupt

Page 322: problem 4

a. This solution forces the two cooperating processes to alternate visits to the critical
section. Thus, there is an implicit timing dependency between the two processes,
e.g., if one is much slower than the other, then the fast process will have to
synchronize with the slow process on each cycle through the loop. Also, if either
stops then the other can also only run through the critical section at most one
more time

b. This algorithm does not solve the problem since it might allow both processes to
be in the critical section at the same time. Suppose that the two processes
"simultaneously" execute the while-test; they will both pass the test, set their
respective flag and enter the critical section. The algorithm is not safe.

c. This algorithm attempts to resolve the problem described in part (b) by setting the
flag before attempting to test the opposite flag. Now, if both processes set their
respective flag variables "simultaneously," then the two processes are deadlocked.

