Project Topics:
1) P2P File Downloading

You have 5-6 processes (at least on 3 computer) running simultaneously. There is a list of local files (chosen from a common global list of 10-15 files) on each process. But none of two processes have exactly the same list.

A. File allocation

When a process starts, it can randomly chose 4-5 files from the global list and stores in an array of list;

B. Operations

a. File request: from the same big list, choose one file. If the peer owns the file, print “File XXX found locally!”. Otherwise, the peer broadcasts to all other peers.

b. Response: All peers, upon the receipt of a request, search it in the local list. If there is match, a peer simply responds by sending a message with following information: peerID and bandwidth (is randomly generated in the range 0.5-10 Mbps, initially at the beginning of the process).

c. Owner Selection: The requester, once receiving a response, will choose the 2 owners with the highest bandwidth.
· Implementation for how to choose is not specified. Two possible approaches: (1) choose and update; (2) use a timer to determine.

d. Downloading: the requester prints out “downloading from XXX and XXX…..”

e. Every peer requests another randomly chosen file every 20 seconds.
f. Your programs should run forever.
g. Bonus: (1) GUI (5%). (2) Actual file downloading for a single file (5%); (3) Actual file splitting (10%). You take the maximum bonus of the three.
2) Autonomous System

You have 5-6 processes (at least on 3 computers) running simultaneously. Each process is autonomous in a sense that it makes its decision by itself based on certain information exchanged among neighbors.
Initially, each process randomly determine its location (x, y) within a range 100X100 meters.

Operations:

· Movements: every 20 seconds, each process randomly selects a direction (North, South, West, and East), moves at a speed of 2-5 meters/second for 10 seconds and stops.
· Information exchange: Whenever a process stops, it broadcasts to all other processes its location (x,y).

· Action: when a process finds out that it collides with another process, it will choose an opposite to the previous direction. Collision is defined by the distance of less than 0.5 meters.

· Printing: (1) where a process is located before broadcasting its location; (2) which direction it is moving, at what speed. (3) when collision occurs.

· All processes run continuously for a long time.
· Bonus: GUI part (10%).
3) Client/Server System

You have one server and 5 client processes. Server and clients should be on different machines. There are a list of 5 items to be bid from clients.

Initially, each client decides its maximum bid price for all items.

Operations:

· Bidding Initiation: periodically (every minute), each process initiates a bidding procedure for one randomly chosen item by sending item number and price to the server. The offered price can be chosen randomly between 0 and max_price.
· Notification: Upon the receipt of a bidding, the server broadcasts to all processes the bidding item and price.

· Bidding follow-up: Upon the receipt of a notification, a process other than the initiator will decide to compete or give up. If the price is higher than the maximum price initially set for this item, it will give up by keeping silent. Otherwise, it waits for a short random time (0-10 seconds) and follows up by adding the price by 5-20% and sends to the server.

· Bidding conclusion: After notifying all processes, the server starts a timer of 30 seconds. If no new bidding received for the same item, the most recent bidder wins. The server simply sends a congratulation message to the winner.
· Printing: (1) bidding price from any process. (2) which processes have given up. (3) which process wins for which item.

· All processes run continuously for a long time.
· Bonus: GUI (10%).
Example: 5 processes bidding for a book with maximum prices being $40, $50, $60, $65, and $45, respectively.

If process 1 chooses $25, process 2 offers 27.5, process 3 offers 31.25, so on. When the price reaches $40 or higher, process 1 will give up. Eventually, process 4 wins.
