Problem 7

- a) 10 users can be supported because each user requires one tenth of the bandwidth.
- **b)** p = 0.1.

c)
$$\binom{40}{n} p^n (1-p)^{40-n}$$
.

d)
$$1 - \sum_{n=0}^{9} {\binom{40}{n}} p^n (1-p)^{40-n}$$
.

Problem 12

The queuing delay is 0 for the first transmitted packet, L/R for the second transmitted packet, and generally, (n-1)L/R for the n^{th} transmitted packet. Thus, the average delay for the N packets is

$$(L/R + 2L/R + \dots + (N-1)L/R)/N = L/RN(1 + 2 + \dots + (N-1)) = LN(N-1)/(2RN)$$

= $(N-1)L/(2R)$

Note that here we used the well-known fact that

$$1 + 2 + \dots + N = N(N+1)/2$$

Problem 18

- a) 40,000 bits
- **b)** 40,000 bits
- c) The bandwidth-delay product of a link is the maximum number of bits that can be in the link
- d) 1 bit is 250 meters long, which is longer than a football field
- e) s/R