## MATH 141

## MIDTERM EXAM II

November 6, 2001

| NAME (please p    | orint legibly):      |                         |                       |
|-------------------|----------------------|-------------------------|-----------------------|
| ν                 | ID Number:           |                         |                       |
| v                 |                      | with the Lecture Time   | e <b>:</b>            |
| Felea (2 o'clock) | Knightly (9 o'clock) | Kojcinovic (10 o'clock) | Voloshina (2 o'clock) |

- No calculators are allowed on this exam.
- Please show all your work. You may use back pages if necessary. You may not receive full credit for a correct answer if there is no work shown.
- Please put your simplified final answers in the spaces provided.

| QUESTION | VALUE | SCORE |
|----------|-------|-------|
| 1        | 10    |       |
| 2        | 10    |       |
| 3        | 9     |       |
| 4        | 9     |       |
| 5        | 16    |       |
| 6        | 16    |       |
| 7        | 10    |       |
| 8        | 10    |       |
| 9        | 5     |       |
| 10       | 5     |       |
| TOTAL    | 100   |       |

1. (10 pts) Find the tangent line to the graph of  $f(x) = \frac{e^x}{x^2}$  at (1, e).

ANSWER:

- **2.** (10 pts) Let  $f(x) = x^2 + 2x$ .
- (a) Find f'(x) using the definition of a derivative.

ANSWER:

(b) Find x at which the tangent line to the graph of f(x) is horizontal.

- 3. (9 pts) Compute the following limits.
- (a)  $\lim_{x\to 0} \sin(x + \sin x)$

ANSWER: \_\_\_\_\_

(b)  $\lim_{x \to \pi} \sqrt{2 + \cos x}$ 

ANSWER:

(c)  $\lim_{x \to \infty} \frac{x^3 + 2x - 9}{6x^3 - 6x + 4}$ 

4. (9 pts) Compute the following limits.

(a) 
$$\lim_{x \to \infty} \frac{2x}{\sqrt[4]{x^4 + 3}}$$

ANSWER:

(b) 
$$\lim_{x \to -\infty} \frac{3x^3 + 2x}{x^2 + 1}$$

(c) 
$$\lim_{x \to -\infty} \left( x + \sqrt{x^2 + 2x} \right)$$

5. (16 pts) Differentiate the following functions.

(a) 
$$\left(\sin\frac{\pi}{6}\right)^3$$

ANSWER:

(b) 
$$e^x \left( x^2 + \frac{1}{\sqrt{x}} \right)$$

ANSWER:

(c) 
$$\frac{x^3 + 17}{1 + \frac{1}{x}}$$

ANSWER:

(d) 
$$\frac{x^2 + \sin x}{\sqrt{x}}$$

| ANSWER:  ANSWER:  (c) How far from John is the ball at a moment when it turns around? |
|---------------------------------------------------------------------------------------|
| (b) At what time is the velocity of the ball zero?  ANSWER:                           |
| (b) At what time is the velocity of the ball zero?  ANSWER:                           |
|                                                                                       |
|                                                                                       |
|                                                                                       |
| (c) How far from John is the ball at a moment when it turns around?                   |
|                                                                                       |
| ANSWER:                                                                               |
| (d) At what time does the ball come back to John?                                     |
|                                                                                       |
| ANSWER                                                                                |

7. (10 pts) Assuming that the amount of bacteria at time t is given by  $f(t) = 2e^t + 3t^2 + 10$ , find the rate of growth of the bacterial colony when t = 10.

| ANSWER: |  |
|---------|--|
|         |  |

8. (10 pts) Find c with which

$$f(x) = \begin{cases} x^2 - c^2 & \text{if } x \le 2\\ 4x - 7 & \text{if } x > 2 \end{cases}$$

is a continuous function. With c you find, determine whether f is differentiable at x = 2?

**9.** (5 pts) Use the Intermediate Value Theorem to show that the equation  $x^4 - x - 1 = 0$  has a root in the closed interval [1, 2].

10. (5 pts) Find the horizontal and the vertical asymptotes of  $f(x) = \frac{x^2 + 1}{x^2 - 1}$ .