MATH 141
MIDTERM EXAM II
November 6, 2001

1. (10 points) Let f(z) = z* + 2z.

(a) Find f'(z) using the definition of the derivative.
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(b) Find z at which the tangent line to the graph of f(x) is horizontal.

The tangent line is horizontal when f'(z) = 0.
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2. (8 points) Find an equation of the tangent line to the graph of f(z) = — at
z

(1,e).

The slope of the tangent line is equal to f'(1).
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Therefore the point-slope equation is y — e = —e(z — 1), or
y = —ex + 2e

3. (6 points) Compute the following limits.

(a) lim sin(z + sinz) = sin(0 + sin0) = sin(0) =0
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(b) lim V2 +cosz=+/2+cos(m) =v2—-1=1

4. (12 points) Compute the following limits.
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5. (16 points) Differentiate the following functions.
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6. (12 points) After kicking a ball up a steep hill John waits for it to roll back
down. Assuming that its distance from John is given by f(t) = —2t2+ 8¢, answer
the following questions.

(a) What is the velocity of the ball at time ¢?
v(t) = f'(t) = —4t+8
(b) At what time is the velocity of the ball zero?
v(t)=0 = —4t+8=0 = t=2
(¢) How far from John is the ball at a moment when it turns around?
The ball turns around at the moment when its velocity is equal to 0 =
f2)=-2-22+8-2=8
(d) At what time does the ball come back to John?

The ball comes back to John when f(¢) = 0.
—2t2+8t=0 = 2t(-t+4)=0

There are two solutions: ¢ = 0 is the initial moment, and
t = 4 is when the ball comes back to John.



7. (8 points) Assuming that the amount of bacteria at time ¢ is given by f(t) =
2e! + 3t? + 10, find the rate of growth of the bacterial colony when ¢ = 10.

The rate of growth is f'(t) = 2et + 6t.
f'(10) = 2% + 60
8. (10 points) Let f be a function defined as follows:
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(a) Find lim f(z) and lim f(z).
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(b) Is f continuous on R? Why?
f(z) is continuous at 1 because lim f(z) = lim f(z) = f(1), and it is
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continuous at all other points because 22 + z and = + 1 are continuous on
R.

(c) Is f differentiable on R? Why?

Clearly, f(x) is differentiable at all points except possibly at 1. It is differ-
entiable at 1 if and only if the slopes of z* + z and z + 1 agree at 1 (so that
the graph is smooth at 1). The derivatives of these functions are 2z + 1 and
1, so the slopes at 1 are 3 and 1. They are different, therefore f(z) is not
differentiable at 1.

9. (6 points) Use the Intermediate Value Theorem to show that the equation

z* — 2 — 1 =0 has a root in the closed interval [1,2].

Let f(z) =2* —z — 1.
f(1) = =1 <0 and f(2) =13 > 0, therefore by the intermediate value theorem
there is a point ¢ in [1,2] s.t. f(c) =0, i.e. ' — 2 — 1 =0 has a root in [1,2].
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10. (12 points) Find the horizontal and the vertical asymptotes of f(z) = FREE
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Therefore, y = 1 is the only horizontal asymptote.

f(z) is not defined at 1 and —1 (because the denominator is 0 at these points),
so it may have vertical asymptotes at 1 and —1. Let’s check:
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Therefore, z = 1 and x = —1 are vertical asymptotes.



