MATH 141

FINAL EXAM

December 16, 2000

- No calculators are allowed on this exam.
- Please show all your work. You may use back pages if necessary. You may not receive full credit for a correct answer if there is no work shown.
- Please put your simplified final answers in the spaces provided.

Part A

- 1. **(20pts)** Let $f(x) = x^3 3x$.
 - (a) Find the tangent line to the graph of f(x) where x = 2.
 - (b) Find the secant line to the graph of f(x) over the interval [-2, 4].
 - (c) The Mean Value Theorem applied to f over the interval [-2, 4] implies that there is a number $c \in (-2, 4)$ such that f'(c) equals to the slope of the above secant. What is c?
 - (d) Find the line passing through the point (2,2) perpendicular to the above secant.
- 2. (20pts) Answer each of the following questions:

(a) Let
$$f(t) = \frac{\sqrt{t}}{1+t}$$
. What is $f'(1)$?

(b) If
$$y = e^{x\sqrt{2}}$$
, what is $\frac{d^2y}{dx^2}$?

(c) If
$$f(\theta) = \sin(\theta)$$
, what is $f^{(65)}(\theta)$?

(d) What is
$$\frac{d}{dx}(e^{\sin\sqrt{\pi}} + \ln(2))$$
?

- 3. (10pts) Let $\theta \in (0, \frac{\pi}{2})$ be an angle such that $\cot(\theta) = \frac{1}{2}$.
 - (a) What is $tan(\theta)$?
 - (b) What is $sec(\theta)$?
- 4. (20pts) Differentiate each of the following functions:
 - (a) $(x^2 + x)^{11}$
 - (b) $e^x \tan(x)$
 - $(c) \qquad \frac{\sin x}{(x+2)^2}$
 - (d) $\sin(e^{x^2})$
- 5. (10pts) Evaluate the following limits (note: some of them may be $+\infty$, $-\infty$, or may not even exist):
 - (a) $\lim_{x \to 3^+} \frac{\sqrt{x} \sqrt{3}}{x 3}$
 - (b) $\lim_{x \to 1} \frac{x^2 1}{x^2 + x 2}$
- 6. (20pts) Let f be a function defined as follows:

$$f(x) = \begin{cases} x^2 - 2x & \text{if } x < 0 \\ 0 & \text{if } x = 0 \\ x^3 - 2x & \text{if } x > 0 \end{cases}$$

Because $f(0) = \lim_{x\to 0^+} f(x) = \lim_{x\to 0^-} f(x) = 0$, function f is continuous at 0 as well as at all other numbers. Recall that:

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0},$$

provided that this limit exists.

- (a) Evaluate the above limit as $x \to 0^+$.
- (b) Evaluate the above limit as $x \to 0^-$.
- (c) Is f differentiable at 0? If it is, what is f'(0)?
- (d) What is f'(x) for $x \in (-\infty, 0)$?

End of Part A

Part B

7. (20pts) Differentiate each of the following functions:

- (a) $\arctan(3x)$
- (b) $\ln(1 + \frac{1}{x})$
- (c) $\ln(2^x x^2)$
- (d) x^{x^2+x}

8. (10pts) Evaluate the following limits (note: some of them may be $+\infty$, $-\infty$, or may not even exist):

- (a) $\lim_{x \to \infty} \frac{(2x+2)^2}{(x+1)^2}$
- (b) $\lim_{x \to -\infty} \frac{x^2 + 1}{x + 1}$

9. (10pts) If $y^3 + y^2x = 3$, find the value of $\frac{dy}{dx}$ at the point (2, 1).

10. **(10pts)** Let $f(x) = x^{\frac{2}{3}}$.

(a) Find the linear approximation for f(x) at 27 (i.e.: an approximation valid for x near 27).

(b) Use the above to calculate $(27.003)^{\frac{2}{3}}$. Calculate your answer to 5 decimal places.

11. (10pts) Air is pumped into a spherical balloon at a rate of $10 \,\mathrm{cm}^3/\mathrm{min}$ (recall that the volume and the surface area of a sphere of radius r are given by $V = \frac{4}{3}\pi r^3$ and $A = 4\pi r^2$, respectively).

(a) What is the rate of change of the radius (in cm/min) at a moment when $r = 9 \,\mathrm{cm}$?

(b) What is the rate of change of the area (in cm²/min) at the same time?

12. **(10pts)** Evaluate the following limits (note: some of them may be $+\infty$, $-\infty$, or may not even exist):

3

(a)
$$\lim_{x \to 0} \frac{\cos x - 1}{x^2}$$

(b)
$$\lim_{x \to \infty} \sqrt{1 + \frac{1}{e^x}}$$

13. **(30pts)** Let $f(x) = \frac{x^3}{3} - \frac{3x^2}{2} + 2x$.

- (a) Find all critical numbers of f.
- (b) Find all intervals on which f is increasing.
- (c) Find all intervals on which f is decreasing.
- (d) Find all intervals on which f is concave up.
- (e) Find all intervals on which f is concave down.
- (f) Find all inflection points of f.