## MATH 141

## MIDTERM EXAM I

October 5, 2000

| NAME (please print legibly  | <sup>7</sup> ):       |                        |  |
|-----------------------------|-----------------------|------------------------|--|
| Your Soc.Sec.Number:        | •                     |                        |  |
| E-mail address:             |                       |                        |  |
| Circle your Instructor's Na |                       |                        |  |
| Ravenel(2 o'clock)          | Kojcinovic(9 o'clock) | Kojcinovic(10 o'clock) |  |

- No calculators are allowed on this exam.
- Please show all your work. You may not receive full credit for a correct answer if there is no work shown.
- $\bullet$  Please put your final answer in the space provided.

| QUESTION | VALUE | SCORE |
|----------|-------|-------|
| 1        | 10    |       |
| 2        | 20    |       |
| 3        | 30    |       |
| 4        | 40    |       |
| 5        | 50    |       |
| 6        | 60    |       |
| 7        | 70    |       |
| 8        | 80    |       |
| TOTAL    | 550   |       |

## 1. **(10pts)**

| (a) | Find the slope of the line through the points $(-1,0)$ and $(5,6)$ .                              |
|-----|---------------------------------------------------------------------------------------------------|
|     |                                                                                                   |
|     | ANSWER:                                                                                           |
| (b) | Write the equation of this line.                                                                  |
|     |                                                                                                   |
|     | ANSWER:                                                                                           |
| (c) | Find the equation of the line parallel to the above line passing through the point $(-2,0)$       |
|     |                                                                                                   |
|     | ANSWER:                                                                                           |
| (d) | Find the equation of the line perpendicular to the above line passing through the point $(1,0)$ . |
|     |                                                                                                   |
|     |                                                                                                   |
|     | ANSWER:                                                                                           |

| _    |                     |   |
|------|---------------------|---|
| 9 1  | $(20 \mathrm{pts})$ | ١ |
| ۷. ۱ | (⊿opus              | , |

(a) Suppose you know that  $tan(\theta) = 5$ . What is  $ctan(\theta)$ ? ANSWER: (b) What is  $sec(\theta)$  knowing that  $0 < \theta < \frac{\pi}{2}$ ? ANSWER: (c) What is  $cos(\theta)$  with  $\theta$  as above? ANSWER: (d) What is  $sin(\theta)$ ? ANSWER: 3. (30pts) State the domain of the following functions: (a)  $\sqrt{1-x^2}$ ANSWER: (b)  $arctan(\frac{1}{x})$ 

4. (40) Solve for x in each of the following:

(a) 
$$ln(x) + ln(x^3) - ln(2x) = 3$$

ANSWER:

(b) 
$$e^{2x} - 2e^x + 1 = 0$$

ANSWER:

$$(c) ln(2^x) = ln(5)$$

ANSWER:

5. **(50pts)** Evaluate the following limits (note: some of them may be  $+\infty$ ,  $-\infty$ , or may not even exist):

(a) 
$$\lim_{x \to 4} (x-3)^{10}$$

ANSWER:

(b) 
$$\lim_{x \to 1} \frac{1 - 2x^2}{x^2 + x - 2}$$

ANSWER:

(c) 
$$\lim_{x \to -1} \frac{x^2 - 2x - 3}{x^2 - x - 2}$$

ANSWER:

(d) 
$$\lim_{x \to 1} \sqrt{\frac{x-2}{x-5}}$$

6. **(60pts)** Let f be a function defined as follows:

$$f(x) = \begin{cases} \frac{1}{1 + \sin(x)} & \text{if } x < 0\\ -2 & \text{if } x = 0\\ \frac{2}{3 - \cos(x)} & \text{if } x > 0 \end{cases}$$

(a) Evaluate the limit  $\lim_{x\to 0^+} f(x)$ .

ANSWER:

(b) Evaluate the limit  $\lim_{x\to 0^-} f(x)$ 

ANSWER:

(c) State if the limit  $\lim_{x\to 0} f(x)$  exists. If it does exist, evaluate it.

ANSWER: \_\_\_\_\_

7. (70pts) Evaluate the following limits at  $\infty$ :

(a) 
$$\lim_{x \to \infty} \frac{4x+1}{8x - \sin(x)}$$

ANSWER:

(b)  $\lim_{x \to \infty} \sqrt{\frac{4x+2}{8x-4}}$ 

8. (80) Let  $f(x) = \frac{1}{x}$ . Find the tangent line to the graph of f at the point (1,1).