MATH 141

FINAL EXAM ANSWER KEY

December 15, 1999

No calculators allowed on this exam. Please show all your work.

PART I (Part I is worth 100 points in total.)

1. (10 pts)

(a) What is the slope of the line through the two points (2,3) and (4,7)?

ANSWER: 2

(b) What is the equation of the line which is parallel to the line in part (a) and which passes through the point (1, 2)?

ANSWER:
$$y = 2x$$

(c) What is the equation of the line which is perpendicular to the line in part (a) and which passes through the point (1, 2)?

ANSWER:
$$y = (5 - x)/2$$

In questions 2-5, circle the correct answer.

2. (5 pts) Let $f(x) = \frac{4x^2 - 3}{x^2 + 2}$. Find f'(x).

(a)
$$\frac{8x(x^2+2) + (4x^2-3)2x}{(x^2+2)^2}$$
 (b)
$$\frac{8x(x^2+2) - (4x^2-3)2x}{(x^2+2)^2}$$

(c)
$$\frac{(4x^2-3)2x-8x(x^2+2)}{(x^2+2)^2}$$
 (d)
$$-(x^2+2)8x-2x(4x^2-3)$$

(e) none of these

ANSWER: (b)

3. (5 pts) Let $g(x) = (5x^3 - 2)^{-1/3}$. Find g'(x).

(a)
$$-\frac{1}{3}(5x^3-2)^{-4/3}$$

(b)
$$\frac{45}{2} (5x^3 - 2)^{2/3} x^2$$

(c)
$$-5x^2(5x^3-2)^{-4/3}$$

(d)
$$\frac{1}{10x^2} (5x^3 - 2)^{2/3}$$

none of these

ANSWER: (c)

4. (5 pts) Let $g(x)' = (1 + \tan x)^{3/2}$. Find g'(x).

(a)
$$3(1 + \tan x)^{1/2} \cot x$$

(b)
$$\frac{3}{2} (1 + \tan x)^{1/2}$$

(c)
$$\frac{3}{2} (1 + \tan x)^{1/2} \sec^2 x$$

(d)
$$\frac{3}{2} (1 + \sec^2 x)^{1/2}$$

(d) none of these

ANSWER: (c)

5. (5 pts) Let $f(x) = \sin^{-1}(e^x)$. Find f'(x).

(a)
$$\frac{e^x}{\sqrt{1-x^2}}$$

$$(b) \quad \frac{x}{\sqrt{1-x^2}}$$

(c)
$$\frac{e^x}{\sqrt{1 - e^{2x}}}$$

$$(d) \quad \frac{x}{\sqrt{1+x^2}}$$

none of these (d)

ANSWER: (c) Problems 6 and 7 refer to the function $h(x) = \frac{4x^2 - 2x}{3 - 3x^2}$.

In these two questions, there may be more than one correct answer, so circle all answers which apply.

The horizontal asymptotes of h(x) are y =6. (5 pts)

(a) 1 (b)
$$\frac{1}{2}$$
 (c) 0 (d) -1 (e) $\frac{-4}{3}$

$$(d) - 1$$

(e)
$$\frac{-4}{3}$$

ANSWER: (e)

7. (5 pts) The vertical asymptotes of h(x) are x =

(a) 1 (b) $\frac{1}{2}$ (c) 0 (d) -1 (e) $\frac{-4}{3}$

ANSWER: (a) and (d)

In questions 8–12, circle the correct answer.

8. (5 pts) Find an equation for the tangent line to the curve

 $y = x + \sin 2x$ at x = 0.

(a) y = 2x (b) y = 3x (c) y = 3

(d) y = -2x + 1 (e) none of these

ANSWER: (b)

9. (5 pts) Let the function f be defined by

$$f(x) = \begin{cases} \sqrt{4 - x^2} & \text{for } -2 < x < 2\\ |x + 2| & \text{for all other } x \end{cases}.$$

Find all values of x for which f is discontinuous.

(a) -2

(b) 2

(c) for -2 and 2

(d) $\{x | x \ge 2 \text{ or } x \le -2\}$

(e) none of these

ANSWER: (b)

10. (5 pts) Find y' if y is defined implicitly by the equation $y + \sin y = \cos(x^2)$.

(a)
$$y' = \frac{-\sin(x^2)}{1 + \cos y}$$

(b)
$$y' = \frac{-2x\sin(x^2)}{1 + \cos y}$$

(c)
$$y' = 2x\sin(x^2)$$

(d)
$$y' = -\left(\frac{1 + 2x\sin(x^2)}{\cos y}\right)$$

(e) $y' = 1 + \cos y + 2x \sin(x^2)$

ANSWER: (b)

A 7-foot-tall man walks towards a lamppost at the rate of 3 feet per second. The lamp is 21 feet above the ground. Let x be the man's distance from the lamppost, and let s be the length of his shadow.

11. (5 pts) Find a formula for s in terms of x.

(a)
$$s = \frac{1}{3} x$$

(b)
$$s = \frac{1}{2} a$$

(b)
$$s = \frac{1}{2}x$$
 (c) $s = \sqrt{49 + x^2}$

(d)
$$s = \frac{3}{x}$$

(e) none of these

ANSWER: (b)

How fast is the length of his shadow changing?

- 3 feet per second
- (b) -1 foot per second
- (c) -3 feet per second
- (d) $-\frac{3}{2}$ feet per second
- (e) none of these

ANSWER: (d)

In questions 13-15, circle the correct answer.

13. (5 pts) Let $f(x) = \sin(x^2 - 1)$. Find f'(1).

- (a) 0
- (b) 1
 - (c) 2
- (d) 3
- (f) 5

ANSWER: (c)

14. (5 pts) Let $f(x) = \cos(x)\sin(x)$. Find f'(0).

- (a) 0
- (b) 1 (c) 2
- (d) 3
- (e) 4

(e) 4

(f) 5

ANSWER: (b)

15. (5 pts) Find the slope of the tangent line to the curve $x \cos y + y \sin(x-1) + 1 = 0$ at the point $\left(1, \frac{\pi}{2}\right)$.

- (a) 0
- (b) 1 (c) -1 (d) $\pi/2$ (e) -2 (f) π

ANSWER: (d)

16. (10 pts) Evaluate the following limits. Write DNE if the limit does not exist. (a) $\lim_{x\to 4} \frac{x^2 - 5x + 4}{x^2 - 6x + 8}$

ANSWER: 3/2

(b) $\lim_{x\to 2} \frac{x^2 - 5x + 4}{x^2 - 6x + 8}$

ANSWER: DNE

(c) $\lim_{x \to 0} \frac{\sin^2(3x)}{2x^2}$

ANSWER: 9/2

(d) $\lim_{x \to 0^{-}} \frac{|x|}{x}$

ANSWER: -1

(e) $\lim_{x \to 2} \frac{\sqrt{x} - \sqrt{2}}{x - 2}$

ANSWER: $1/(2+\sqrt{2}) = (2-\sqrt{2})/2$

17. (10 pts) A rock is thrown up from a cliff 64 ft. high with a velocity of 48 ft./sec. Its' height above the ground (in feet) at time t (in seconds) is given by

$$s(t) = -16t^2 + 48t + 64$$

(a) Find the velocity of the rock at time t.

ANSWER: 48 - 32t

(b) What is the maximum height the rock reaches?

ANSWER: 100

(c) Find the velocity of the rock when it is 32 ft. above the ground.

ANSWER: $-16\sqrt{17}$

(d) At what time does the rock hit the ground?

ANSWER: t = 4

END OF PART I

PART II (Part II is worth 100 points in total.)

18. (10 pts) Which of the following statements are true? Circle T or F as appropriate.

Τ $\ell n(e^x) = x$ for all real xF

ANSWER: True

 $\sqrt{x^2} = x$ for all real xТ

ANSWER: False

 $F \qquad \ell n(e^{x^2}) = 2x \text{ for all real } x$ Τ

ANSWER: False

 $e^{\ell n(x) + \ell n(y)} = xy$ if x > 0 and y > 0Τ

ANSWER: True

19. (12 pts) Water is pouring into an inverted conical tank at a constant rate of 2 ft³ per minute. If the tank is 10 ft. deep and has a radius of 5 ft. at the top, how fast (in ft. per minute) is the water level in the tank rising when the water is 6 ft. deep? Hint: the volume of a cone of height h and radius of the base r is $\frac{1}{3} \pi r^2 h$. Circle the correct answer.

ANSWERS:

- (a) $\frac{1}{10\pi}$ (b) $\frac{2}{9\pi}$ (c) $\frac{1}{10}$ (d) $\frac{1}{2\pi}$

- (e) $\frac{1}{5}$ (f) $\frac{1}{2}$ (g) 1 (h) $\frac{\pi}{2}$

ANSWER: (b)

20. (12 pts) Suppose f(10) = 4 and f'(10) = 60. Use linear approximations to estimate f(10.2).

ANSWER: 16

21. (10 pts) Which of the following statements are TRUE and which are FALSE? CircleT or F as appropriate.

T F Continuous functions are always differentiable.

ANSWER: False

T F Differentiable functions are always continuous.

ANSWER: True

T F If a function has a local maximum at c, then f'(c) exists and = 0.

ANSWER: False

The tangent line to a graph at a point (c, f(c)) never intersects the graph in more than one point.

ANSWER: False

T F If f'(c) = 0, then f(c) must be either a local maximum or a local minimum.

ANSWER: False

22. (12 pts) Find the absolute maximum and minimum values of the function $f(x) = x^3 - 2x^2 + x$ on the interval $0 \le x \le 2$ and all places where they occur.

The max value of f(x) is 2.

and it occurs at x = 2

The min value of f(x) is 0

and it occurs at x = 0 and x = 1.

	(12 oropri	pts) ate.	Which	of the follo	owing are T	RUE and w	hich are FALSE? Circle ${f T}$ or ${f F}$ as			
,	${ m T}$	F		A continuous function on an interval always has a maximum and a minimum value.						
						ANSWER:	True			
,	Т	F	If .	f'(c) = 0 ar	d f''(c) > 0), the $f(x)$ h	has a local maximum at c .			
						ANSWER:	False			
	Т	F	If	f(x) and g	(x) are two	functions v	which are differentiable on an			
,				interval I and $f'(x) = g'(x)$ for all x in I, then $f(x) = g(x)$ for all						
				n I .		,				
		F		ANSWER: False						
	Т		As	Assuming that the position of a particle is given by a differentiable						
,			fur	function $s(t)$ on a time interval, then the average velocity over that						
			int	interval is equal to the instantaneous velocity at some time in that						
			int	interval.						
	ANSWER: True									
24.	(32	pts)	Parts	(a) through	n (g) refer t	o the function	on $f(x) = x^4 - 8x^3$. In these eight			
par	ts, th	ere ma	y be m	ore than on	e correct an	swer, so <u>circ</u>	cle all answers that apply. In parts			
(d)	throu	igh (g)	, you m	ay need to	specify mor	e than one c	choice in order to combine intervals			
for	a con	nplete	answer.	(Each par	t is worth 4	points.)				
	(a)	At wha	at value	es of x does	the graph of	of f have a 1	horizontal tangent line?			
		(a	a) 0	(b) 4	(c) 6	(d) 8	(e) none of these			
						ANSWER:	(a) and (c)			
	(b)	At what values of x does $f(x)$ have <u>critical</u> points?								
		(a	a) 0	(b) 4	(c) 6	(d) 8	(e) none of these			

(c)	For what x does the graph of f have an inflection point?									
	(a) 0	(b) 4	(c) 6 (c)	d) 8 (e)	none of these					
			ANS	WER: (a) ar	ad (b)					
(d)	For what x intervals is f increasing?									
	(a) $(-\infty,0)$	(b) (0, 4)	(c) (4, 6)	(d) (6, 8)	(e) $(8, +\infty)$					
	ANSWER: (d) and (e)									
(e)	For what x intervals is f decreasing?									
	(a) $(-\infty, 0)$	(b) (0, 4)	(c) (4, 6)	(d) (6, 8)	(e) $(8, +\infty)$					
	ANSWER: (a).(b) and (c)									
(f)	For what x intervals is f concave upwards?									
	(a) $(-\infty, 0)$	(b) (0, 4)	(c) (4, 6)	(d) (6, 8)	(e) $(8, +\infty)$					
	ANSWER: $(a),(c),(d)$ and (e)									
(g)	For what x intervals is f concave downwards?									
	(a) $(-\infty,0)$	(b) (0, 4)	(c) (4, 6)	(d) (6, 8)	(e) $(8, +\infty)$					
	ANSWER: (b)									

ANSWER: (a) and (c)