MATH 141

EXAM II

November 18, 1999

No calculators allowed on this exam. Please show all your work.

I. In ques	tions $1-$	5, circle t	he approp	riate letter	•		
1. (5 pts)	Let $f(x)$	(x+1)	$x^{2}(x+2)$. F	ind $f'(0)$.			
(A) 6	(B) 9	(C) 4	(D) 12	(E) 8	(F) 16	(G) 5	(H) 20
2. (5 pts)	Let $f(x)$	$(x) = \frac{x^3}{(x+2)}$	$\frac{1}{2}$. Find f'	(-1).			
		\ /		(E) 20	(F) 9	(G) 12	(H) 16
3. (5 pts)	Find t	he slope of	the tangen	at line to the	curve $2x^3$	$+2y^3-9x_3$	y = 0 at the
point $(1,2)$.							
(A) 3 (B)	9 (C) 9/2 (D) 1/3	(E) $4/5$	(F) 18/5	(G) 7	(H) $-18/5$
4. (5 pts)	Let $f(x)$	$= x \sin x.$	Find $f''(0)$).			
(A) $\sqrt{2}$ (B)	$\sqrt{2}/2$	(C) 2 (D) $-\sqrt{3}$	(E) $-\sqrt{2}$	(F) -2	(G) $\sqrt{3}$	(H) $-\sqrt{2}/2$
5. (5 pts)	If $f(x)$	$= \ell n((x^2 +$	$(1)^5$), then	f'(2) =			
(A) 0	(B) 1	(C) 2	(D) 3	(E) 4	(F) 5	(G) 6	(H) 7
II. Find	the deri	vatives of	the follow	ving function	ons.		
6. (5 pts)		_					
7. (5 pts)	f(x) =	$\frac{x^2+1}{x}$					
8. (5 pts)	f(x) =	$\cos(x^3)$					
9. (5 pts)	f(x) =	$\cos^3(x)$					

III. Find the derivatives of the following functions.

10. (5 p	$f(x) = f(x) \equiv 3^{\omega}$
` -	$f(x) = x^{\sin x} $
	ts) $f(x) = x$ $f(x) = \ln(\sin(e^x))$
13. (5 p	ts) $f(x) = \sin^{-1}(2x)$ (e.e. $\arcsin(2x)$)
14. (12	pts) A ball is thrown straight up with an initial velocity of 48 ft/sec from the
top of a b	building 160 ft high. Its height above the ground $s(t)$, at time t (in seconds) is given
by	
	$s(t) = -16t^2 + 48t + 160 .$
(a)	What is the maximum height of the ball?
	ANSWER:
(b)	What is the velocity of the ball when it hits the ground?
,	ANSWER:
15 (11	pts) A cylindrical water tank has a radius of 12 inches. If water flows into the
•	
tank at a	rate of 2 cubic inches per second, how fast is the water level in the tank rising?
	ANSWER:
16. (12	pts) A light is on the ground 40 meters from a building. A man 2 meters tall
walks fro	m the light toward the building at 3/2 meters/sec.
(a)	Find the height of his shadow as a function of the elapsed time since he leaves the
light.	
	ANSWER:
(b)	Find the rate of change of the length of his shadow when he is 20 meters from the
building.	
J	ANSWER: