MATH 141

Final Exam

May 7, 2001

Part I

- 1. (8 points)
 - (a) Solve the inequality 17x + 3 < 14x 2
 - (b) Write the equation of the line parallel to the line 4x 6y = 3 that goes through (1,1).
- 2. (10 points) Find the exact value of:
 - (a) $tan(\pi)$
 - (b) $\sin^2(3) + \cos^2(3)$
 - (c) $\csc\left(\frac{\pi}{2}\right)$
 - (d) $\frac{1}{2} \ln 9 + \ln 5 \ln 15$
 - (e) $2^{\log_2 3 + \log_2 7}$
- 3. (10 points)
 - (a) Let $f(x) = \arcsin(2x)$ and $g(x) = x^3$. Compute $h(x) = (f \circ g)(x)$
 - (b) Find the inverse of h.
- 4. (10 points) Solve the equations:
 - (a) $\ln x \ln x^3 = -4$
 - (b) $5^{x^2-4} = 125$

5. (8 points) Find c such that the function f is continuous on \mathbb{R} .

$$f(x) = \begin{cases} x^2 - c & , x \le 5 \\ cx + 6 & , x > 5 \end{cases}$$

6. (24 points) Compute the limits (do not use L'Hospital's Rule):

(a)
$$\lim_{x \to 3} \frac{x^2 - 7x + 12}{x^2 - 9}$$

(b)
$$\lim_{x \to 4^+} \frac{x^2 + 3x}{(x-4)(x+7)}$$

(c)
$$\lim_{x \to 5} \frac{\frac{1}{x} - \frac{1}{5}}{x - 5}$$

(d)
$$\lim_{x \to \infty} \frac{6x^3 - 3x^2 + 4}{x^3 + 7x - 5}$$

(e)
$$\lim_{x \to -\infty} \frac{x^7 + 10}{x^4 + 3}$$

(f)
$$\lim_{x\to 0} x^4 \sin\left(\frac{1}{2x}\right)$$

(g)
$$\lim_{x \to 0} \frac{\sin 4x}{9\sin 6x}$$

(h)
$$\lim_{x \to 0} \frac{\cos x - 1}{e^x \tan(2x)}$$

7. **(12 points)** Let $f(x) = \frac{x}{x-3}$

(a) Find the vertical and horizontal asymptotes of the graph of f.

2

- (b) Find the derivative of f using the definition.
- (c) Find the tangent line to the graph of f at (4,4).

8. (12 points) Find the derivatives of:

(a)
$$f(x) = e^{4x} \tan 2x - \sqrt{x} \cos x^2$$

(b)
$$g(x) = \frac{2 \cot x - x^6}{x^3 + 5}$$

(c)
$$h(x) = 4^{\cos 5x} + (\cos 5x)^4$$

(d)
$$k(x) = \sqrt[3]{\sin(e^{-x})}$$

9. (6 points) The cost function of producing x units of some commodity is $C(x) = 1000 + 23x + 0.002x^3$. What is the marginal cost at the production level of 400 units?

Part II

1. (9 points) Differentiate the following functions:

(a)
$$f(x) = \arcsin(2x)$$

(b)
$$g(x) = e^{\arctan x}$$

(c)
$$h(x) = \log_3(-\sin x)$$

- 2. **(12 points)** Let $f(x) = x^3 \ln x$. Find f'(x), f''(x), f'''(x), and $f^{(4)}(x)$.
- 3. (10 points) If $xy^3 x^2y^2 + 2y = -8$ and y(3) = 2, find y'(3).
- 4. (10 points) Let $f(x) = 5(x^2 + 1)^3(\cos x)^{4x}$. Use logarithmic differentiation to find f'(x).
- 5. (10points) Find the linearization of $f(x) = x^{3/2}$ at x = 4 and use it to approximate $(4.02)^{3/2}$.
- 6. (12 points) Car A starts moving north at 0.5 km/min from a point P. At the same time car B starts moving west at 1 km/min from a point 10 km due east of P. At what rate is the distance between the

cars changing 6 minutes later? Is the distance increasing or decreasing at this instant?

- 7. **(15 points)** Let $f(x) = x^4 + 2x^3 5$.
 - (a) Find the critical numbers of f(x).
 - (b) Where is f(x) increasing? Decreasing?
 - (c) Find local maxima and minima of f(x).
 - (d) Where is f(x) concave upward? Concave downward?
 - (e) Find the inflection points of f(x).
- 8. (10 points) Show that the equation $x^5 + 3x^3 + 5x + 7 = 0$ has exactly one root in the interval [-1, 1].
- 9. (12 points) Evaluate the following limits:
 - (a) $\lim_{x \to 0} \frac{\tan x}{e^x 1}$
 - (b) $\lim_{x \to \infty} x^2 e^{-2x}$
 - (c) $\lim_{x \to 0^+} (-\ln x)^x$