MATH 141

MIDTERM EXAM I WITH ANSWERS

February 21, 2000

- No calculators are allowed on this exam.
- Please show all your work. You may not receive full credit for a correct answer if there is no work shown.
- Please put your final answer in the boxes provided
- 1. (8pts) Let P be the point (1,2) and Q be the point (-3,4).
 - (a) What is the slope of the line L joining P to Q?

$$-1/2$$

(b) The midpoint between P and Q is (-1,3). Find the equation of the line which is perpendicular to L and which goes through this midpoint.

$$y = 2x + 5$$

2. (8pts) Find the value of h in the diagram below:

$$3(\sqrt{3}-1)$$

- 3. **(15pts)**
 - (a) Solve the following equation for x:

$$x = 4$$

$$\ln x + \ln(x - 2) = \ln(2x)$$

- (b) If t is the **number of years since 1990**, a population of rabbits is given by the equation $p(t) = 100e^{kt}$ for some constant k, and the population doubles every $\frac{1}{4}$ of a year.
 - i. What was the population in 1990?

100

ii. Find the constant k.

 $4 \ln 2$

4. (20pts) Evaluate the following limits (note: some of them may be $+\infty$ or $-\infty$).

(a)
$$\lim_{x\to 2} \frac{x^2 + 5x + 6}{x + 2}$$

5

(b)
$$\lim_{x \to 3} \frac{\frac{1}{3} - \frac{1}{x}}{x - 3}$$

1/9

(c)
$$\lim_{x \to 1^{-}} \frac{2x^2 + x + 1}{(x - 1)(x + 2)}$$

 $-\infty$

(d)
$$\lim_{x \to 1^+} \frac{2x^2 + x + 1}{(x - 1)(x + 2)}$$

 ∞

(e)
$$\lim_{x \to -3^+} \frac{3x^2 + 7}{(x+1)(x+3)}$$

 $-\infty$

5. **(8pts)** Find the horizontal asymptote of the function $y = \frac{4x^2 - 3}{8x^2 - 6x}$. Justify how you obtain your answer by showing your work.

$$y = 1/2$$

6. **(13pts)**

(a) Find
$$\lim_{x\to 3^+} \frac{|3-x|}{2x-6}$$
.

(b) What value of c will make the following function continuous at x = 2?

$$f(x) = \begin{cases} \frac{2x^2 - 2x - 12}{x + 2} & \text{if } x > 2\\ cx + c & \text{if } x \le 2 \end{cases}$$

$$c = -2/3$$

7. (5pts) In the picture below, give the formula for the slope of the secant line which goes through the points P and Q on the graph of y = f(x).

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

- 8. (15pts) A rock is dropped from the roof of a building, and its height in meters is given by $s(t) = -5t^2 + 30$ where t is measured in seconds.
 - (a) What is the average velocity of the rock during the interval from t = 1 to t = 2 seconds?

 -15
 - (b) Use the **definition of instantaneous rate of change** to find the velocity of the rock at t = 1 second, v(1).

9. **(8pts)** In the diagram below, the position of a car is given as a function of time (time is given in seconds and distance in meters). Use the diagram to answer the following questions, giving letters or pairs of letters as answers:

(a) When is the car travelling the fastest.

 \mathbf{F}

(b) Give an interval when the car is speeding up (e.g. "between J and K").

between E and F

(c) Give two letters at which times the car is stationary.

E and G

(d) Estimate the velocity of the car at C.

 $10 \mathrm{m/sec}$