Mth 142 Practice Final

PART I

1 Evaluate the following integrals.

$$\int_{0}^{4} \frac{1}{\sqrt{x^{2} + 16}} dx , \int x e^{2x} dx , \int \frac{4x}{\sqrt{x^{2} + 16}} dx , \int_{1}^{2} x^{3} e^{x^{4}} dx ,$$

$$\int_{1}^{e} \frac{\sqrt{\ln x}}{x} dx , \int \sin^{4} x dx , \int_{0}^{\pi/2} \sin^{3} t \cos^{2} t dt , \int_{1}^{e} x^{3} \ln x dx$$

- 2. A rectangular swimming pool is 50 m long, 15 m wide and 3 m deep. The depth of the water is 2 m. How much work is required to pump all of the water out over the top? Use $\rho = 1000 \text{ kg/m}^3$ for the density of water and $g = 10 \text{ m/s}^2$ for the acceleration of gravity.
- **3.** Find the volume of the solid obtained by rotating the region bounded by $y = \sqrt{x}$, y = 0 and x + y = 2 about the x-axis.
- **4.** Find the area of the region enclosed by $y = x^3$ and $y = 2x x^2$.
- 5. Exercise 55, page 399 of the textbook.
- **6.** Let $I = \int_1^5 e^{-x^2} dx$ and let L, R, M and T be the left end-point, right end-point, midpoint and trapezoid sums with n = 4, approximating the integral I. Arrange, without computing them, the numbers I, L, M, R, T in increasing order.

PART II

7. A function is known to have the following values:

X	0	2	4	6	8
f(x)	1	4	5	5	7

Use Simpson's rule to approximate $\int_0^8 f(x) dx$.

8. Evaluate the following integrals.

$$\int_{8}^{11} \frac{4x-4}{(x-5)(x+1)} dx \quad , \int \frac{x+2}{x(x^2+1)} dx$$

9. Determine whether the integral is convergent or divergent. Evaluate in case the integral is convergent.

$$\int_{1}^{\infty} \frac{1}{1+x^{2}} dx \quad , \int_{0}^{\infty} \frac{1}{(x-1)^{2}} dx \quad , \int_{0}^{\infty} e^{2x} dx \quad , \int_{0}^{1} \frac{\ln x}{\sqrt{x}} dx \quad , \int_{1}^{\infty} x e^{-2x} dx$$

- 10. Set up, but do not evaluate, the integral needed to find the area of the surface obtained by rotating the curve about the specified axis.
- (a) $y = \sqrt{x}$ $0 \le x \le 4$ about the x-axis;
- (b) $y = \sqrt[3]{x}$, $0 \le x \le 1$ about the y-axis.
- 11. Find the length of the curve $y = \frac{2}{3} x^{3/2}$, $0 \le x \le 8$.