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Maria Nogin, Katherine Nogin, and Michelle Nogin

ast year, we celebrated 50 years 
since the creation of Rubik’s cube. 

Perhaps most people have tried 
to solve a Rubik’s cube at least 
once in their life. Some dedicate 
a lot of time to learning efficient 

methods. Speed cubers know many different 
algorithms and can do them really fast: The world 
record when this article was written was about 
three seconds. (This time is beyond us!) Most 
solvers, though, know just a handful of algorithms 
and take a few minutes. (Or longer! Why rush if 
we enjoy the process, right?)

However, there are other things we can do with 
a Rubik’s cube besides solving it. One of them is 
creating various patterns, such as those shown in 
figure 1. The bigger the cube, the more elaborate 
patterns one can create. 

But can we create any pattern we like? 
Observe that a solved cube has six faces, all 
colored differently. For a cube with the standard 
coloring, white and yellow are on opposite faces, 
red and orange are on opposite faces, and blue 
and green are as well. Thus, there does not exist 
an edge piece with, say, white on one side and 
yellow on the other. Likewise, there is no corner 
piece with red, orange, and blue on its three 
sides. But what about those configurations that 
only involve pieces that actually exist, and each 
only once? A closer inspection of any odd-sized 
cube reveals that there is no way to swap face 
centers as they are connected in a rigid manner. 
When the front center is red and the top center is 
blue, the one on the right must be yellow, the one 
on the left must be white, and so on. Let’s say this 

condition is satisfied as well. Now can we create 
any pattern? For example, can we create the 
pattern shown in figure 2? It is easy to verify that 
all corner and edge pieces exist, but can they be 
moved to make this configuration? 

As we will see, it 
turns out that not 
every configuration 
is attainable. For 
example, in any 
odd-sized cube, 
it is not possible 
to switch just two 
small pieces of the 
cube while leaving 
all other pieces 
intact. Why is that? 

To investigate 
this question, we 
need to use some 
concepts and facts 
that one might see 
in an abstract algebra course.

Permutations 
A permutation on a set S = {1,2,…,n} is, essentially, 
some rearrangement of all the elements of S.  
More formally, a permutation is a one-to-one and 
onto function from S to itself. Permutations can be 
described by using cycle notation, where elements 
that are cyclically permuted are written in a list 
enclosed with parentheses; no element appears 
more than once. If an element is sent to itself, it 
can be omitted from the notation. For example, 
the permutation pictured in figure 3 sends 1 to 
2, 2 to 3, 3 to 1, 4 to 5, 5 to 4, and 6 to itself, so it 
is denoted (1,2,3)(4,5). If a permutation cyclically 
permutes k elements and sends the rest of the 
elements to themselves, it is called a cycle of  
length k. For example, (1,2,3,4) is a cycle of length 
4. Note that because permutations are functions, 
they can be composed. We compute the composition 
of permutations reading them from right to left, just 
like we would compose functions in general. For 
example, if s = ( , )1 2  and t = ( , ),2 3  then
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Figure 1. A few patterns in Rubik’s cubes.

Figure 2. Is it possible to 
make this stripe pattern?
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thus, σ τ = ( , , ).1 2 3  When writing compositions of 
permutations in the cycle notation, we will omit 
the symbol  and just write ( , )( , ) ( , , ).1 2 2 3 1 2 3=  

A cycle of length 2 is called a transposition. 
With a little thought, one can see that any 
permutation can be written as a composition 
of transpositions. Moreover, there are many 
ways to write a permutation as a composition 
of transpositions. For example, we invite you 
to verify that the composition ( , )( , )( , )( , )1 2 1 3 2 3 1 2  
gives the same permutation as the composition 
( , )( , ),1 2 2 3  namely, the cycle ( , , ).1 2 3  However, 
as a theorem in abstract algebra states, any 
permutation can either only be written as a 
composition of an even number of transpositions 
or only as a composition of an odd number 
of transpositions. A permutation is called 
even (respectively, odd) if it can be written as 
a composition of an even (respectively, odd) 
number of transpositions. Being even or odd is 
referred to as the parity of the permutation.

Now let’s see what happens to the parity when 
we compose two permutations. Suppose one 
permutation can be written as a composition of 
k transpositions and another permutation can be 
written as a composition of l transpositions. The 
parities of these two permutations correspond 
to those of k and l, respectively. When we 
compose these two permutations, we obtain the 
composition of all the k l+ . transpositions. Thus, 
the parity of their composition is that of k l+ . 
As the sum of two even numbers or two odd 
numbers is even and the sum of an even number 
and an odd number is odd, we see that the 
composition of two even permutations or two odd 
permutations is even, whereas the composition 
of an even permutation and an odd permutation 
is odd. This is an important fact to keep in mind 
when we get back to investigating cubes!

Practice your newfound permutation skills by 
verifying that

( , , , ) ( , )( , ) ( , ).a a a a a a a a an n n1 2 1 2 2 3 1… = … −

This shows that a cycle of length n can be 
written as a composition of n-1 transpositions. 
This tells us that a cycle of an odd length is an 
even permutation and a cycle of an even length 
is an odd permutation. You might wish to read 
that last sentence one more time.

Switching Pieces
Let’s take a closer look at the classical 3 3 3´ ´  
Rubik’s cube. As you begin playing with the cube, 
all your moves will involve rotating faces. As you 
rotate a face, the center piece remains in the 
center. Now, hold the cube so the face centers 
do not move and notice how the other eight 
pieces (four corners and four edge pieces) move 
when a face is rotated. A 90 rotation cyclically 
permutes the four corners and cyclically permutes 
the four edge pieces. Each cycle of length 4 is 
an odd permutation, so the rotation, which is 
the composition of these two cycles, is an even 
permutation. As each single move of the cube is an 
even permutation, any number of moves can only 
create an even permutation! So, if we start with 
a solved cube, assuming it was solved when we 
first got it out of the package, we will always have 
an even permutation of the 20 movable pieces 
(eight corners and 12 edge pieces). Therefore, it 
is impossible to achieve a configuration in which 
the whole cube is solved but just two pieces are 
switched—whether two corners or two edge 
pieces—as shown in figure 4. 

Rotating Pieces
What about rotating pieces without moving them? 
Could we rotate any number of pieces any way 
we want? To understand the rotations of the 
edge pieces, we will consider a different kind of 

Figure 4. It is impossible to switch just two 
corners or just two edge pieces and have the 
rest of the cube solved.

Figure 3. Permutation (1,2,3)(4,5).
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permutation: 
that of the 
individual faces 
of the movable 
pieces rather 
than that of the 
whole pieces. For 
example, if the 
front-top edge 
piece is rotated, 
the two faces 
of that piece 
switch places, 
yielding a single 
transposition on 
the faces. Each 
move, a rotation 

of one face of the big cube by 90, permutes a total 
of 20 small faces of the pieces. More precisely, 
it contains five cycles of length 4, so altogether 
it is an odd permutation. Two such rotations 
would be an even permutation. Thus, as we play 
with the cube, both odd and even permutations 
of these smaller faces are possible. Does this 
mean it is possible to rotate a single edge piece 
as shown in figure 5? It might seem so at first 
glance but be careful. The ability to produce some 
odd permutation does not guarantee that we can 
produce any odd permutation. 

Let’s restrict our attention to the permutation  
of the faces of just the edge pieces. There are  
12 edges, so altogether they have 24 faces. Any 
90 rotation of a face of the whole cube cyclically 
permutes four edge faces on the rotated face of the 
whole cube and cyclically permutes four edge faces 
on the outer perimeter of the rotated face. Thus, 
the move is an even permutation of the edge faces. 

It follows that 
a configuration 
where one edge 
piece is rotated 
incorrectly, 
and all other 
edge pieces are 
correctly situated, 
is impossible.

Similarly, 
we could ask 
whether it is 
possible to rotate 
a single corner as 
shown in figure 6. 
We will leave this 
question to an 
interested reader. 

Striped Pattern
Now that we understand some impossible 
configurations, we are well equipped to take 
another look at figure 2. Is that configuration 
possible? (Before reading further, feel free to 
investigate this pattern on your own.) Let’s 
always hold our cube so that the red and blue 
centers are at the front and top, respectively, 
and track where we want the corner and edge 
pieces to go. Figure 7 has some of these pieces 
labeled in both the solved cube and the desired 
configuration. 

Using B, G, O, R, W, and Y to denote the colors 
blue, green, orange, red, white, and yellow, we 
see that six corners move in two cycles of length 
3—(BOY, GRY, BRW) and (BOW, GOY, GRW)—
and the corners BRY and GOW remain in their 
original positions. The edge pieces move in two 
cycles of length 3—(BR, RY, BY) and (OW, GW, 
GO)—and one cycle of length 6—(BO, OY, GY, 
GR, RW, BW). Because a cycle of length 3 is an 
even permutation and a cycle of length 6 is an 
odd permutation, the composition of these is 
an odd permutation. That is impossible! So this 
visually appealing configuration is, unfortunately, 
unattainable. 

Other Cubes
All of these results are valid on any odd-sized 
cube: 5 5 5´ ´ , 7 7 7´ ´ , and so on. The even-
sized cubes are very different, though, because 
they do not have a single piece at the center 
of any edge. But you could pretend that they 
are there, only you can’t see them! Therefore, 
if you switch or rotate some of them, you won’t 
notice. So, what happens now? As before, if 
our previous argument does not apply, it does 
not yet mean that it is possible to switch two 
corners, for example, as shown in figure 8. 
However, it turns out that this is possible in any 
even-sized cube. 

Figure 5. Is it possible to rotate 
a single edge piece?

Figure 6. Is it possible to rotate 
a single corner?

Figure 7. Comparing the solved cube to the stripe 
pattern in figure 2.
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In addition, in any cube larger than 3 3 3´ ´ , a 
new kind of move is possible: rotating one of the 
middle layers or slices. It leaves all the corners 
intact but is an odd permutation on the edge 
pieces. It also permutes some of the interior face 
pieces, but many of those are indistinguishable! 
Not surprisingly, it gets more complicated with 
increasing the size of the cube, and that is why 
solving a bigger cube is not just a matter of time 
but requires knowing more algorithms. The 
good news is that if you learn to solve 4 4 4´ ´  and 
5 5 5´ ´  cubes, then you can quite easily generalize 
those algorithms to the larger cubes, so after that, 
it does become just a matter of time. 

Here are a few questions for the reader to 
think about. Suppose we draw stripes (or some 
other pattern) on all faces of a solved 3 3 3´ ´  
cube. Is it possible to obtain a configuration in 
which the cube is solved but the stripes do not 
align on exactly one face as shown in figure 9? 

Do the preceding arguments generalize to 
rectangular prisms that are not cubes, for  
example, 1 2 3´ ´ , 2 2 3´ ´ , or 2 3 3´ ´ ? Can you 
use your knowledge of permutations to analyze 
a pyraminx 
and megaminx 
(tetrahedron and 
dodecahedron, 
respectively; you 
can find their 
pictures on the 
Web if you do 
not know what 
these look like)? 
Can you argue 
that certain 
permutations of 
the corners or 
edge pieces are 
impossible in 
these puzzles? 

There are many other uses of permutations 
besides Rubik’s cubes. They appear in almost any 
branch of mathematics, from combinatorics to 
geometry, as well as other sciences. For example, 
in computer science, they are used to generate 
coding and decoding algorithms; in physics, to 
describe states of particles; and in chemistry, to 
study the geometric structure of molecules. Thus, 
Rubik’s cubes are more than just fun puzzles; 
they are a gateway to higher mathematics 
applicable to many fields. 
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Figure 8. It is possible to switch just two corners in 
any even-sized cube.

Figure 9. Is it possible to obtain 
this configuration?


