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Power sum polynomials

Recall these familiar formulas from Calculus:

n∑
k=1

k = 1 + 2 + . . . + n =
n(n + 1)

2

n∑
k=1

k2 = 12 + 22 + . . . + n2 =
n(n + 1)(2n + 1)

6

n∑
k=1

k3 = 13 + 23 + . . . + n3 =
n2(n + 1)2

4

n∑
k=1

k4 = 14 + 24 + . . . + n4 =
n(n + 1)(2n + 1)(3n2 + 3n− 1)

30
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History

• Pythagoreans (c. 570-500 BCE), Greece

→

• Abu Ali al-Hasan (965-1039), Egypt
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History (cont.)

• Pascal (1623-1662), France

(n + 1)p+1 −

(
1 + n +

(
p + 1

2

) n∑
k=1

kp−1

+

(
p + 1

3

) n∑
k=1

kp−2 + . . . + (p + 1)

n∑
k=1

k

)
= (p + 1)(1p + 2p + 3p + . . . + np)

• 1900s
If n is prime,

1p + 2p + . . . + np ≡

{
−1 (mod n) if n− 1 | p

0 (mod n) if n− 1 6 | p



Recursive definition

Definition 1

For n ∈ R, let S1(n) =
n(n + 1)

2
.

For p ≥ 2 and n ∈ R, we define

Sp(n) =
1

p + 1

[
(n + 1)((n + 1)p − 1)−

p−1∑
i=1

(
p + 1

i

)
Si(n)

]
.

Theorem 2

For p, n ∈ N, Sp(n) =

n∑
k=1

kp.
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Bernoulli numbers

Bernoulli numbers, Bm, are defined as follows:

Definition 3

Let B0 = 1, and for each m ≥ 1,

m∑
i=0

(
m + 1

i

)
Bi = 0.

The first few Bernoulli numbers are:

1, −1

2
,

1

6
, 0, − 1

30
, 0,

1

42
, . . .

Note that for m ≥ 3 odd, Bm = 0.



Identity involving Bernoulli numbers

Theorem 4

For m, k ∈ Z, m ≥ 1, 0 ≤ k ≤ m,

(−1)m−k

(
m

k

)
Bm−k =

m∑
i=k

(
m

i

)(
i

k

)
Bm−i

Sketch of Proof

Induction on both m and k

• Consider the case (m, k) = (m,m)

• Consider the case (m, k) = (m, 0)

• Assume the statement holds for (m, k)
and show it holds for (m + 1, k + 1)
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Symmetry of power sum polynomials

Theorem 5

For each p ∈ N, Sp(n) has symmetry about −1
2 . Namely, it is

symmetric about the vertical line at −1
2 if p is odd, and symmetric

about the point (−1
2 , 0) if p is even.

p = 1 p = 2 p = 3 p = 4

Sketch of Proof

Faulhaber’s (Bernoulli’s) Formula

Sp(n) =
1

p + 1

p∑
i=0

(−1)i
(
p + 1

i

)
Bin

p+1−i

Expanding Sp(−(n + 1)) using the binomial theorem, combining like
terms, and using the previous identity for Bernoulli numbers yields

Sp(−(n + 1)) =

{
Sp(n) if p is odd,

−Sp(n) if p is even.

Corollary 6

For each p ∈ N, the roots of Sp(n) are symmetric about −1
2 . When p is

even, Sp(n) has −1
2 as a root.
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Open questions

• How many (distinct) real roots does Sp(n) have?

• Where are the real roots located?

• Where are the complex roots located?



Thank you!


