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Optimizing rectangle

Out of all rectangles with a given perimeter, which one has the
greatest area?
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Optimizing rectangular prism

Out of all rectangular prisms with a given volume, which one has
the smallest surface area?
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Out of all rectangular prisms with a given volume, which one has
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Out of all rectangular prisms with a given volume, which one has
the smallest surface area?
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Optimizing rectangular prism

Out of all rectangular prisms with a given volume, which one has
the smallest surface area?




The rectangular field roblem

A farmer wants to fence off a rectangular field and divide it into 3
pens with fence parallel to one pair of sides. He has a total 2400 ft
of fencing. What are the dimensions of the field that has the
largest possible area?
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The rectangular field roblem

A farmer wants to fence off a rectangular field and divide it into 3
pens with fence parallel to one pair of sides. He has a total 2400 ft
of fencing. What are the dimensions of the field that has the
largest possible area?

y = 2894 — 1200 — 2x
Area(x) = 1200x — 2x?

Area’(x) = 1200 — 4x =0

x = 300 is an absolute maximum
y = 600

Observation:  the total length of vertical pieces: 1200 ft

the total length of horizontal pieces: 1200 ft
These are equal!
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Why? Functional explanation

y
Let L be the total length of the vertical pieces.
2400 — L is the total length of the horizontal pieces.

_ 2400—L _ L 2400-L
.y =55, Area(L) = i
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The can problem

A cylindrical can has to have volume 1000cm3. Find the
dimensions of the can that minimize the amount of material used
(i.e. minimize the surface area).
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The can problem

A cylindrical can has to have volume 1000cm3. Find the
dimensions of the can that minimize the amount of material used
(i.e. minimize the surface area).

h — 1000

wr2
SA(r) = 2mr? + —QOrOO
SA(r) = 4nr — 220 — ¢
r

3/500

r=n/>- is an absolute minimum

h =298
™

Observation: d =2 52—0 cm h=d!
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Why Psquare — Asquars ?

Prircle Acircle
Equivalently:
Acirz:/e Asquare — Ahexagon
P circle P square P hexagon
wr? 4r2 ?
2mr 8r

?
The denominator is the derivative of the numerator!
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Other boxes

Optimal shape: h=2r



The ellipse inscribed in a semi-circle problem

Of all ellipses inscribed in a semi-circle of radius 1, find the one
with the largest possible area.

Hint: If the semicircle is given by the equation x> +y? =1, y >0,
the ellipse should have equation of the form :—; + (}/;721))2 =1
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The ellipse inscribed in a semi-circle problem

Of all ellipses inscribed in a semi-circle of radius 1, find the one
with the largest possible area.

Hint: If the semicircle is given by the equation x> +y? =1, y >0,
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The ellipse inscribed in a semi-circle problem

Of all ellipses inscribed in a semi-circle of radius 1, find the one
with the largest possible area.
Hint: If the semicircle is given by the equation x> +y?2=1,y>0,

the ellipse should have equation of the form ’; 4 r=hr b) =1
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Thank youl!
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