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A TEACHER’S GUIDE TO ASSESSMENT CONCEPTS AND STATISTICS

CAROLE NEWMAN
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College of Education and Department of Human Development and Molecular Genetics, College of
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The concept of teacher accountability assumes teachers will use data-driven decision making to plan

and deliver appropriate and effective instruction to their students. In order to do so, teachers must be

able to accurately interpret the data that is given to them, and that requires the knowledge of some

basic concepts of assessment and statistics. This article will provide the classroom teacher with the basic

vocabulary of assessment and clear descriptions of these concepts to facilitate their use of assessment

data to develop effective instruction.

Do teacher practitioners really need to know anything about statistics and test interpre-
tation? The simple answer is YES. In today’s world there is no getting away from the
importance of assessment in judging a teacher’s skill, a school’s success, student proficiency
and for making funding, salary and even hiring and firing decisions. An incessant call for
‘‘accountability’’ requires that we quantify our student outcomes in a number of areas from
mastery of content to graduation rate, by using a wide range of assessments—some good
and some not so good. But, to use and interpret assessments appropriately requires some
basic understanding of statistics and research design. These concepts are not independent;
they are necessarily interdependent for practitioners to adequately understand how to use
the information generated by assessment in an appropriate formative, diagnostic, and
applied way.

You might be thinking, ‘‘How can I possibly go wrong in interpreting the data? If
I read it, I will know what it means.’’ The problem is that interpreting what we read is
not always so clear-cut. Although the appropriate use of good information can help us
to improve student learning, misinterpretations can lead us in the wrong direction. To
illustrate this point we will begin by telling you two true short stories that may seem find
hard to believe, but demonstrate how research was misunderstood by two teachers who
were trying to help a student.
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In our first story a well-meaning third-grade teacher explained to a parent why she
chose to wait in teaching her son to read. The teacher shared a research article with the
parent that said there was a significant correlation between height and reading readiness.
Because the student was short, the teacher believed he was not ready for more intensive
reading instruction. She told the mother that she did not want to frustrate the child, and
the teacher suggested waiting until he got taller and physically matured, thus more ready
to read. This may seem to be obviously incorrect, but it is indicative of how a caring teacher
misinterpreted the meaning of statistical significance to imply causation (correlation does not
mean causation), and thereby hampered this child’s learning and academic success.

Our second true story is more related to psychometrics—reliability and validity. In
the fourth grade, this same precocious child asked his teacher, ‘‘How do you know that
Columbus discovered America?’’ The teacher responded by saying. ‘‘It’s in our textbook.’’
The little boy responded, ‘‘I know it’s in the book, but how do you know that’s right?’’
(This is a validity question.) Unfortunately, the teacher thought the child was trying to be
a wiseguy, and she removed him from the class. (Many years later this teacher was taking a
graduate-level research course, and her former student, who she had removed from class,
was the graduate assistant responsible for teaching the module on reliability and validity.
However, he was too shy to reintroduce himself and recall the incident to his former
teacher.) Again, the teacher in this story assumed that because it was written in a material
approved by the district, it must be right. Unfortunately, that is not always the case, and
instead of encouraging critical thinking in her students, her response tended to hamper it.

So What do Teachers Really Need to Know?

The call for data-driven decision making and teacher accountability has made it more
important than ever that teachers accurately interpret the data they are provided with
so they can use them formatively, summatively, and diagnostically to make appropriate
academic choices for students. Teachers must be able to look at scores, growth patterns,
test reliability, and validity to determine how much weight to give to the data, and to
be able to clearly explain results to parents. This requires an understanding of some
minimal concepts in statistics, psychometrics, and research design. The following is a brief
introduction to some of these basic concepts selected to help educators better understand
the literature so they can ask informed questions about what they are reading, and so they
can more accurately interpret data, make appropriate inferences, and take meaningful
action based upon the data.

These very basic concepts are (a) What statistical vocabulary do I need to know?;
(b) What does statistical significance mean?; (c) What is reliability and its relationship to
validity?, and (d) What are the differences between criterion- and norm-referenced tests?

Without these minimal understandings teachers cannot accurately interpret test scores
and they will be less likely to use the information to make appropriate, data-driven curric-
ular decisions. Understanding of key concepts will allow teachers to form and voice their
opinions based on thoughtful and scholarly arguments that can be evaluated objectively.

Interpreting the Language of Statistics

To have a conceptual (not a computational) understanding of statistical concepts, one
needs a basic vocabulary. Therefore, our intent is to introduce some of these terms to im-
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prove communication among professionals and to increase the usefulness and appropriate
application of data.

Grade Equivalence

This measure is very frequently misunderstood by parents and teachers. For example,
if Jimmy, who is in the fourth grade, scores 11.5 on a math test, this does not mean
Jimmy is capable of doing the same work as a student who is in the fifth month of the
eleventh grade. It does mean that Jimmy’s score was similar to what would be expected of
a student in the fifth month of the eleventh grade who was taking the test on the fourth-
grade material. Jimmy’s test probably had to do with addition, subtraction, multiplication
and division, whereas the eleventh-grade test would most likely include some concepts of
algebra, geometry, and other advanced mathematical concepts. In all likelihood, Jimmy
would not be familiar with any of these concepts, and he would not be able to respond
correctly.

Age Equivalence

This is very similar to the idea of Grade Equivalence. One of the major differences is
that instead of reporting a score in terms of a grade level that is divided into 10 intervals
(representing each month of school), age equivalence is divided into 12 intervals, thus
reporting the age and month.

One of the problems with both Grade and Age Equivalence measures is that the
same tests are not given to students at all grade and age levels, but the test calculations are
determined by extending a regression line past the tested populations, and then assuming
all students will maintain the same rate of growth, regardless of their grade or age. Thus,
it assumes a fourth grader learns at the same rate as an eighth grader, on average. We
know this is not necessarily true. Therefore, the further the test score is from the grade or
age intended, the more questionable these become.

Standard Scores

Test scores from various tests are often inappropriately compared. These tests frequently
have different means and standard deviations (SD), and therefore, the raw scores are really
not comparable. In order to be able to appropriately compare scores from different tests,
one needs to convert the raw scores to some common unit of measure. These common units
are referred to as standard scores. That way, the scores are calculated to have similar relative
positions in their distribution of scores and comparisons can be interpreted correctly
(Nitko & Brookhart, 2011; Popham, 2001). For example, if IQ Test A has a mean of
100, and IQ Test B has a mean of 50, then a person who scored 100 on Test A and one
who scored 50 on Test B are comparable. Both are at the mean (average) of their testing
group. By knowing the mean and standard deviation of each test, the standards score allow
us to convert scores to a common unit. A standard deviation is conceptually a statistical value
used to determine how close data points are to a mean value. If the SD D 0, then all scores
have the same value as the mean. The larger the SD, above or below the mean, the further
the average of all scores are from the arithmetic mean. The following are seven of the
most commonly used standard scores that are frequently reported:



90 C. Newman and I. Newman

Z-Scores

This is the most commonly used standard score. A Z-score of 0 will always be reported as
the mean (‘‘z’’ think zero), and the SD will always be 1. Z-scores with a range from C3 to
�3 account for approximately 99% of all scores. Any Z-score above 0 is always above the
mean and a score below 0 is always below the group mean. In the IQ test example above,
both of the scores, 100 and 50, would have a Z-score of 0 because they are both at the
mean of their groups.

T-Scores

This is conceptually the same as a Z-score, but instead of having a mean of 0 for the
distribution of scores, the T-score has a mean of 50, and instead of having a SD of 1, it has
a SD of 10 (‘‘T’’ think 10). So any individual who has a T-score of 50 is at the mean of
his or her group. Likewise, any score that is 1 SD above the mean in both Z and T scores
are at the same relative position in the distribution of scores. The transformation of Zs to
Ts was done to eliminate the need to deal with negative numbers that have to be used to
describe scores below the mean when reporting Z-scores.

Stanines

Another form of standard scores that are frequently reported are stanines. As the term
implies, these raw scores are divided into nine values. The mean of a stanine distribution
is always 5 and the SD is always 2, so someone who is at the average of a stanine distribution
has a score of 5. This is comparable to a Z-score of 0 and a T-score of 50. In using this
calculation, 20% of the scores in a distribution will be at the stanine of 5. The major
disadvantage of using stanines is that it assumes that scores are normally distributed. If
this is not the case, interpretation is difficult. An additional disadvantage is that although
Z- and T-scores actually represent every score in the distribution, stanine scores do not.
Scores are grouped into the nine divisions, so it is likely that a stanine score of 5 will
contain a range of scores, some of which will be closer to a stanine of 6 and some will be
closer to a stanine of 4, for that distribution. Therefore, we lose information concerning
differences among the individual scores in the same stanine.

Percentiles

Percentile scores range from 0 to 100 and they specify the percentage of scores that
fall below a particular score. That is, a percentile of 40 indicates that 40% of the tested
population scored below, and 60% scored higher on that particular test. The point where
50% of the scores fall above and 50% fall below is referred to as the median. This is one
type of average that is commonly reported and differs from the mean. The mean adds and
then averages all scores in the distribution, so it is more sensitive to extreme scores at
either end, whereas the median is always at the 50th percentile.

Percentile Rank

When using percentiles to report scores, individual scores are given a Percentile Rank.
A Percentile Rank of 1 is awarded to all scores that fall between 0 and 1%. Similarly, all
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scores that fall between 37 and 38% would have a Percentile Rank of 38, and all scores
between 76 and 77% have a Percentile Rank of 77.

Normal Curve Equivalents (NCE)

The NCE was developed primarily to evaluate federal programs, such as Title I Reading and
Math. Like the T-score, it also has a mean of 50, but the standard deviation is approximately
21 units. The lack of a more common or convenient number to work with for the standard
deviation, such as 1 or 10, makes some interpretations more difficult. NCE values range
from 1–99, so it is easy to detect small units of gain. For example, an NCE score of 1 would
be comparable to a 1 percentile and a Stanine of 1. An NCE of 15 would be comparable
to a 5 percentile rank and a Stanine of 2. An NCE of 50 is comparable to a 50 percentile
rank and a Stanine of 5, and an NCE of 99 is comparable to a 99 percentile rank and a
Stanine of 9. There are tables in almost every statistics book that report these percentages
and show the conversion relationship between Zs, Ts, percentiles, NCEs, and so on. These
conversions are easy to calculate because they are all standard scores and therefore have a
measure of central tendency that has 50% of the scores above and below the median, and
some common unit of variability (SD).

Vertical Scale Scores

These are less commonly used, but can be seen in some places such as on the TAKS Texas
state proficiency test. When using Vertical Scale Scores, a student’s scale score in one grade
can be compared to the same student’s scale score in another grade as long as the scores
are in the same language and subject area. This allows one to look at that student’s relative
growth across grade levels (Nitko & Brookhart, 2011).

All of the standard scores allow one to make relative comparisons between tests.
Regardless of whether you are using a Z-, T-, Stanine, Percentile, or NCE score, you can
compare all of the scores in terms of the percentage of people who are above or below
a particular value. They all report the relative placement of a score in a distribution of
scores.

Correlations

This is the measure of the degree of a relationship between two or more variables. There
are many types of correlations, but the one most frequently used and the one that we
discuss here is the correlation coefficient (r). It measures the degree of linear (straight line)
relationship between two variables and the values of r range from a C1 to �1, with
a 0 indicating no relationship. The higher the absolute value of r, that is, the closer
the calculated correlation is to either C1 or �1, regardless of the sign, the greater the
relationship. So, a correlation of .6 shows less of a relationship than a correlation of �.8.
The sign only relates to the direction of the relationship, not the magnitude. Therefore,
a negative correlation means that as one variable increases the other decreases (think the
amount of gas in your car and amount of miles driven), and a positive correlation indicates
that as one variable increases the other increases (think about time spent studying and test
scores).

All tests of significance are really measures of relationships that exist in a sample and
are then inferred to the population from which the sample was drawn. However, even if a
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significant relationship (correlation) that is not due to chance is found, it is inappropriate
to assume that one variable caused the other. For example, there is a significant correlation
between the amount of ice cream consumed and the number of drownings that occur.
It would be inappropriate to assume that eating ice cream causes people to drown even
though a significant relationship exists between the two. It is more likely that people eat
more ice cream during the summer when they are more likely to go swimming, and when
more people swim, the incidence of drowning is more likely. Even though both events
increase similarly, one does not cause the other.

Going back to our original story about the teacher who delayed reading instruction
because her student was too short, it is apparent that the teacher inappropriately assumed a
causal relationship existed between height and reading readiness. No statistical procedure
allows one to assume causal relationships. Causality can only be assumed when a research
design allows the researcher to control for alternative explanations. This generally requires
having a control group that does not get the treatment and the random assignment of
subjects to treatment groups. This is seldom, if ever, possible when research is conducted
in natural settings such as a classroom or school.

What Does Statistical Significance Mean?

When something is reported as being ‘‘statistically significant’’ it means that the relation-
ship being reported is not likely to be due to chance. Although this statement is absolutely
correct, it is meaningless by itself.

To understand statistical significance, one needs to know that when a sample from a
population of interest is analyzed, such as a sample of students from a particular school
district, the results are assumed to represent what occurs in the population from which the
sample was drawn. That is, the sample would have a proportion of students who mirror
the school district’s demographics on variables such as males and females, socioeconomic
status (SES), racial groups, second language learners, and so on, so that the results could be
assumed to represent the entire school population. To do this accurately, the sample has to
be unbiased in that it fairly represents the whole population. If it does not, any inferences
to the larger population, regardless of the level of significance (confidence that it is not
due to chance), would be inappropriate. (Random sampling procedures are assumed to
produce unbiased samples.) Frequently, samples are not representative of the populations
from which they are drawn, and therefore any inferences made from the sample to the
population are likely to be inaccurate.

The second thing that needs to be understood about statistical significance is that
it is operationally defined by the alpha level (level of confidence) selected. In education
and the social sciences, that level is usually .05, .01, or .001. This means that at an alpha
level of .05 one can be 95% confident that a significant relationship found in a sample is
not due to chance and probably exists in the population. For an alpha level of .01, one
would be 99% confident that the relationship is not due to chance, and for .001, one
would be 99.9% confident that a significant relationship found in a sample also exists in
the populations from which the sample was drawn.

Although the above interpretation of an alpha level is accurate, this does not mean
that the results will be replicated from sample to sample. Therefore, finding statistical
significance at an alpha level of .05 (95% confidence) does not mean that the results
would be replicated 95% of the time. In actuality, it would only be replicated 50% of the
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time. Explaining why this is the case goes beyond the scope of this article, but it is important
to keep in mind that significance does not mean replicability (Newman, Newman, Brown,
& McNeely, 2006, p. 143).

As previously stated, statistical significance does not mean that a relationship is causal.
If there is a statistically significant relationship between height and intelligence (or readi-
ness to read), it does not mean that height is causing the difference in intelligence.
Similarly, if there is a statistically significant relationship between SES and grade point
averages (GPA), we cannot say that differences in GPA are due to differences in SES.
It is important to remember that one CANNOT assume that correlations (relationships)
mean causation. Only controlled research design can determine if causal relationships
exist (Campbell & Stanley, 1967; Newman et al., 2006).

What is Reliability and its Relationship to Validity?

When using assessment instruments it is very important that teachers understand the
concepts of reliability, validity, and the relationship between the two. Reliability is an
estimate of the consistency of an assessment. A reliable instrument should have similar results
every time it is used. If you are measuring a student’s height every day for a week, you should
reliably get pretty much the same height each day. Technically, reliability is an estimate of
measurement error. If there is no measurement error, you would get the same answer every
time you measure the same concept, and you would have a reliability estimate of 1 (r D 1.0).
For instance, if we incorrectly assume height is related to intelligence, we could conceivably
try to estimate a student’s intelligence by measuring the student with a yardstick. Every time
the student is measured we would get very similar results, and therefore our measure is
highly reliable even though it is not meaningful. In the stories presented at the beginning
of this article, both examples would have high reliability estimates because little children
are likely to be shorter and have lower reading readiness and reading level scores, and
many social studies texts would state as fact that Columbus discovered America. However,
that does not mean one can infer that height causes reading readiness or that Columbus
actually did discover America. Consequently, having a high reliability estimate is important
but not sufficient for determining if results are meaningful. We also need estimates of
validity.

Validity is an estimate of how well a test measures what it is supposed to measure.
There are at least eight types of validity, but we will only discuss a few. Face validity (the
weakest form) is estimated by how well a test looks like it is measuring what it is supposed to
be measuring. Expert judge validity, is when a test measures what it purports to measure based
on the judgment of experts. Obviously, this is only as good as the expertise of the judges and
their credentials should be documented. Another type of validity is concurrent, sometimes
called criterion, known group, or discriminant validity. This is based on the correlation between
a criterion (maybe a similar test or observed behavior) and the test of interest. The type
of validity that may be the most useful for educators is predictive validity. This estimates
how well the test score obtained by an individual predicts the outcome of interest, such
as GPA, graduation, and so on. The final type of validity that we will define is construct

validity. This type of validity is generally a combination of all of other types of validity,
and is generally based upon how well all of the validity estimates support the underlying
construct (theory) that the test is supposed to measure. This type of validity frequently uses
a statistical procedure called factor analysis to estimate the underlying construct of a test.
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When evaluating the usefulness or appropriateness of a test, one needs to look
at the reported reliability and validity estimates of the instrument. Unfortunately, test
developers often provide huge amounts of data about test reliability estimates obtained
(how often it gets the same results) from sophisticated statistical techniques, such as Rasch
Modeling, item response theory (IRT) for item development, and Cronbach’s alpha, but
offer insufficient information about the validity (does it really measure what we want it to
measure?). Sometimes, the way they present the Rasch Modeling and IRT data makes it
sound like they are presenting validity estimates, but they are not. They are really estimates
of measurement error (reliability) and not validity. Although knowing if a test has good
reliability estimates is important, it is not as important, nor is it a substitute, for having
good validity estimates.

What are the Differences Between Criterion- and Norm-Referenced Tests?

Tests can be divided into two major categories, criterion-referenced and norm-referenced.
Criterion-referenced tests are developed to determine how well a student can achieve the
desired objectives of instruction, standards, or benchmarks. Therefore, on a good criterion-
referenced test it is possible that all students can achieve a score of 100% or all can fail,
depending on how well they achieved the objectives being tested. Norm-referenced tests have a
different purpose. They are designed to differentiate between students of varying abilities.
The reliability estimates of these tests are frequently used as important indicators of the
effectiveness of the test, but the more important validity estimates that indicate how well
the test actually tests what it purports to test are often not reported.

State proficiency tests, such as the Florida FCAT, the Texas TAKS, and the Indiana
I-STEPC are constructed to serve as a combination of both criterion- and norm-referenced
tests. These tests are developed to both differentiate between students and to assess the
minimum level of objective attainment necessary to be considered proficient in a particular
area. Because they have multiple purposes that are based on both norm- and criterion-
referenced concepts, there is an inherent problem in interpreting the scores they produce
and in using them as a basis for an accountability system.

This ‘‘serious design flaw’’ was reported by Stroup, Pham, and Alexander (2007)
from the University of Texas at Austin in a project report on an innovative mathematics
program designed to improve math skills for seventh and eighth graders in an economically
disadvantaged middle school. Stroup and colleagues reported on the disparity between the
dramatic growth students were demonstrating on district designed benchmark tests of the
mathematical concepts taught in the classroom and the marginal increase in scores on
the end of year Texas standardized TAKS tests. Dr. Stroup and colleagues found that
standardized test scores from the previous year were better predictors of how students
scored on the following year’s standardized tests than were the benchmark tests they had
taken during the year. Stroup et al. said these findings threatened the foundation of high
stakes test-based accountability and states the tests were ‘‘virtually useless at measuring
the effects of classroom instruction.’’ Without going into too much detail, Stroup et al.’s
research found that the test developers created test items using IRT, which produces items
designed more to rank students than to measure what they have learned. These test items
were more like those of IQ tests than content tests. Stroup et al. claimed that in Texas
(and probably elsewhere) the district benchmark tests assess benchmark achievement, but
the standardized tests are developed by the testing company with dual purposes in mind.
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Stroup et al.’s findings were reported widely in the popular press like the New York Times

and Huffington Post, but are being challenged by the testing company as misleading.

Conclusion

Even though we as educators have little, if any, input into the construction of the tests
that are being used to judge our competence, we can question these tests and challenge
test construction companies, school districts, states, and the federal government to take
a closer look at the philosophy used to create items. We need them to be sure that the
actual intention of the test is to identify student growth in content if they are truly to be a
measure of accountability. They have to be designed in a manner that will provide accurate
information for a sound accountability system.

Too often today’s teachers are presented with test scores and are told the results are a
measure of their success in the classroom. Although the results certainly are representative
of how well students performed on the test, they may not provide a true picture of what
has been accomplished academically in the classroom. We believe that it is important for
teachers to understand basic concepts of statistics, research design, and assessment so they
can more effectively evaluate the information that comes to them as test results. Having this
understanding may help them better interpret the information, make appropriate choices
in planning instruction, and be better able to explain to parents what their student’s scores
really mean.
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