L 2.10 Quantified Statements j

We have mentioned that if P(x) is an open sentence over a domain § , then P(x)is a
statement for each x € S. We illustrate this again.

Example 222 [fS={1,2,--.,7}, then

202 + 54 (1)
Pn): %_H) is prime.

is a statement for each n € S. Therefore,

P(Q): 3isprime.
P2): 7is prime.
P(3): 11 is prime.
P(4) : 19 is prime.
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are true statements, while
P(5): 27 is prime.
P(6) : 39 is prime.
P(7): 51 is prime.

are false statements. ¢

There are other ways that an open sentence can be converted into a statement, namely
by a method called quantification. Let P(x) be an open sentence over a domain S.
Adding the phrase “For every x € §” to P(x) produces a statement called a quantified
statement. The phrase “for every” is referred to as the universal quantifier and is
denoted by the symbol V. Other ways to express the universal quantifier are “for each”
and “for all”. This quantified statement is expressed in symbols by

Vx € S, P(x) 2.2)
and is expressed in words by
Forevery x € §, P(x). (2.3)

The quantified statement (2.2) (or (2.3)) is true if P(x) is true for every x € §; while the
quantified statement (2.2) is false if P(x) is false for at least one element x ¢ .
Another way to convert an open sentence P(x) over a domain § into a statement
through quantification is by the introduction of a quantifier called an existential quantifier,
Each of the phrases “there exists”, “there is”, “for some”, and “for at least one” is referred
to as an existential quantifier and is denoted by the symbol 3. The quantified statement

Ix € S, P(x) 2.4)

can be expressed in words by

There exists x € S such that P(x). (2.5)

The quantified statement (2.4) (or (2.5)) is true if P(x) is true for at least one element
x € §, while the quantified statement (2.4) is false if P(x) is false forall x € S.

We now consider two quantified statements constructed from the open sentence we
saw in Example 2.22.

Example 2.23  For the open sentence
20 + 5+ (=1)"
P(n): ——2—{—J— is prime.

over the domain § = (1,2, - -, 7}, the quantified statement

245+ (=1)"
2

VneS, P(n): Foreveryn € §, is prime.

is false since P (5) is false, for example; while the quantified statement

2 2 54 (=1
dn €8, P(n) : There exists n € S such that Li-—z(—)— is prime.
¢
i

is true since P (1) is true, for example.
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The quantified statement Yx € S, P(x) can also be expressed as
If x € S, then P(x).
Consider the open sentence P(x) : x2 > 0. over the set R of real numbers. Then
¥Yx € R, P(x)
or, equivalently,
vx eR,x2>0
can be expressed as
For every real number x, x* > 0.
or
If x is a real number, then x2 > 0.
as well as
The square of every real number is nonnegative.

In general, the universal quantifier is used to claim that the statement resulting from
a given open sentence is true when each value of the domam of the varlable is assigned
to the variable. Consequently, the statement Vx € R, x% > 0 is true since x2 > 0is true
for every real number x.

Suppose now that we were to consider the open sentence Q(x) x% < 0. The state-
ment Vx € R, Q(x) (that is, for every real number x, we have x% < 0) is false since,
for example, Q(1) is false. Of course, this means that its negation is true. If it were not
the case that for every real number x, we have x? < 0, then there must exist some real
number x such that x> > 0. This negation

There exists a real number x such that x2 > 0.
can be written in symbols as
Jx € R, x2 >0 or 3x € R, ~0(x).
More generally, if we are considering an open sentence P (x) over a domain S, then
~V¥x eS8, P(x))=3Ix € §,~P(x).
Suppose that we are considering the set A = {1, 2, 3} and its power set P(A), the set of
all subsets of A. Then the quantified statement
For every set B € P(A), A— B # 0. 2.6)

is false since for the subset B = A = {1, 2, 3}, we have A — B = (. The negation of the
statement (2.6) is

There exists B € P(A) suchthat A— B = 0. 2.7

The statement (2.7) is therefore true since for B = A € P(A), we have A — B = @. The
statement (2.6) can also be written as

IfBC A then A— B # 0. (2.8)
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Consequently, the negation of (2.8) can be expressed as
There exists some subset B of A suchthat A— B = . ¢

The existential quantifier is used to claim that at least one statement resulting from
a given open sentence is true when the values of a variable are assigned from its domain.
We know that for an open sentence P(x) over a domain S, the quantified statement
Jx € S, P(x) is true provided P(x) is a true statement for at least one element x € S.
Thus the statement 3x € R, x2 > 0 is true since, for example, x2 > 0istrue forx = 1.
The quantified statement

Ax eR, 3x =12

is therefore true since there is some real number x for which 3x = 12, namely x = 4 has
this property. (Indeed, x = 4 is the only real number for which 3x = 12.) On the other
hand, the quantified statement

el 4n—-1=0

is false as there is no integer n for which 4n — 1 = 0. (Of course, 4n — 1 = 0 when
n = 1/4 but 1/4 is not an integer.)

Suppose that Q(x) is an open sentence over a domain S. If the statement Ix €
S, Q(x) is not true, then it must be the case that for every x € S, Q(x) is false. That is,

~Fx €85, 0(x)=Yx € S, ~0x).

We illustrate this with a specific example.

The following statement contains the existential quantifier:
There exists a real number x such that x> = 3. 2.9

If we let P(x): x2 =3, then (2.9) can be rewritten as Ix € R, P(x). The statement
{2.9) is true since P(x) is true when x = 3 (or when x = —+/3). Hence the negation
of (2.9) is:

For every real number x, x* # 3. 2.10)
The statement (2.10) is therefore false. ¢

Let P(x, y) be an open sentence, where the domain of the variable x is S and the
domain of the variable y is T. Then the quantified statement

Forallx e Sandy e T, P(x,y).
can be expressed symbolically as
Vx e 8,VyeT, P(x,y). (2.11)
The negation of the statement (2.11) is
~Vx €S, VyeT, Px,y)=3xeS, ~¥yeT, P(x,y)
=3xS,y eT, ~P(x,y). (2.12)

We now consider examples of quantified statements involving two variables.
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Consider the statement
For every two real numbers x and y, x> + y* > 0. (2.13)

If we let
P(x,y): x2+y2>0

where the domain of both x and y is R, then statement (2.13) can be expressed as
Vx e R,V¥y e R, P(x,y) (2.14)
or as
Vx,y € R, P(x,y).

Since x> > 0 and y? > 0 for all real numbers x and y and so x* +y* > 0, P(x, y) is
true for all real numbers x and y and the quantified statement (2.14) is true.
The negation of statement (2.14) is therefore

~(WVx eR,Vy eR, P(x,y)=3dx e R, Iy e R, ~P(x, y), 2.15)

which, in words, is
There exist real numbers x and y such that x> + y* < 0. (2.16)
The statement (2.16) is therefore false. ¢

For an open sentence containing two variables, the domains of the variables need
not be the same.

Consider the statement
For everys € Sandt € T, st +2is a prime. 2.17)
where the domain of the variable s is S = {1, 3, 5} and the domain of the variable t is
T ={3,9). If we let
Q(s,t): st+2isaprime.

then the statement (2.17) can be expressed as
Vs e S, VteT, O, 1). (2.18)
Since all of the statements
01,3): 1-34+2isaprime. Q3,3): 3-3+2isaprime.
0(5,3): 5-342isaprime.
0,9 : 1-942isaprime. Q3,9 : 3-942isaprime.
065,9): 5-942isaprime.

are true, the quantified statement (2.18) is true.




Example 2.28

2,10 Quantified Statements

As we saw in (2.12), the negation of the quantified statement (2.18) is
~NVseS,VteT, Q(s,t))=3s € §,Jt €T, ~0(s,1)
and so the negation of (2.17) is
There exists € S and t € T such that st + 2 is not a prime. 2.19)

The statement (2.19) is therefore false. ¢

Again, let P(x, y) be an open sentence, where the domain of the variable x is § and
the domain of the variable y is T. The quantified statement

There exist x € § and y € T such that P(x, y).
can be expressed in symbols as
dx e S,y eT, P(x,y). (2.20)

The negation of the statement (2.20) is

~@Axe§,AyeT, Px,y))=V¥xe S, ~QyeT, P(,y))
=VxeS,VyeT, ~P(x,y). (2.21)

We now illustrate this situation.
Consider the open sentence
R(s,t): |s—1|+ ]t —2| <2,

where the domain of the variable s is the set S of even integers and the domain of the
variable t is the set T of odd integers. Then the quantified statement
ds € S8,3reT,R(s, 1) (2.22)

can be expressed in words as

There exist an even integer s and an odd integer t such that |s — 1| + |t — 2| < 2.

Since R(2,3): 1+ 1 < 2 is true, the quantified statement (2.23) is true. 229
The negation of (2.22) is therefore
~@3seS,AteT, R(s,t))y=VYse S, ¥Vt €T, ~R(s,1) 2.29)
and so the negation of (2.22), in words, is
For every even integer s and every odd integert, |s — 1| + |t — 2| > 2. (2.25)
The quantified statement (2.25) is therefore false. ¢

Quantified statements may contain both universal and existential quantifiers. We
will encounter this in Section 7.2.




