| 7.2 Revisiting Quantified Statements J

Many (in fact, most) of the statements we have encountered are quantified statements.
Indeed, for an open sentence P (x) over a domain S, we have often considered a quantified
statement with a universal quantifier, namely

Vx € §, P(x): Forevery x € S, P(x). or If x € §, then P(x).
or a quantified statement with an existential quantifier, namely
dx € S, P(x) : There exists x € S such that P(x).

Recall that ¥x € S, P(x) is a true statement if P(x) is true for every x € §; while
dx € S, P(x) is a true statement if P(x) is true for at least one x € S.

Example 7.1 Let S = {1, 3,5, 7} and consider

P(n): n®2+n+ 1isprime.
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Jor eachn € S. Then both
YneS, P(n): Foreveryn € S, n?+n+1is prime.
and
In €S, P(n): There exists n € S such that n*> + n + 1 is prime.
are quantified statements. Since

P(): 12414+1=3 is prime.  Is true,
PR): 324+3+1=131is prime. is true,
P(5): 524+541=31is prime. is true,
P(7)y: 7> +7+1=>5Tisprime. is false,

it follows that Yn € S, P(n) is false and An € S, P(n) is true. On the other hand, the
statement

Q : 323 is prime.
is not a quantified statement, but Q is false (as 323 = 17 - 19 is not prime). ¢

Let P(x) be a statement for each x in some domain S. Recall that the negation of
Vx eS8, P(x)is

~¥x €S, Px))y=3x € §, ~P(x).
and the negation of 3x € S, P(x) is
~@Ax e §,P(x)) =Vx € §, ~P(x).
Again, consider
P(n): n*+n+1is prime,

from Example 7.1, which is a statement for each n in S = {1, 3, 5, 7}. The negation of
YneS, P(n)is

In € S, ~P(n): There exists n € S such that n2 4+ n 4 1 is not prime.

is true as 7 € § but 72 + 7 + 1 = 57 is not prime. On the other hand, the negation of
dned, P(n)is

Vn € S,~P(n): Ifn € S, then n? + n + 1 is not prime.

is false since, for example, 1 € § and 12414+1=31is prime.
In Chapter 2 we began a discussion of quantified statements containing two quan-
tifiers. The following example concerns two quantifiers.

Example 7.2 Consider

P(s,t): 2° + 3" is prime.
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where s is a positive even integer and t is a positive odd integer. If we let S denote the
set of positive even integers and T the set of positive odd integers, then the quantified
statement

Ise€S,3teT, P(s, t)
can be expressed in words as

There exist a positive even integer s and a
positive odd integer t such that 2° + 3' is prime.

The statement (7.1) is true since

P2, 1):22 4+ 3" =7 is prime.
is true. On the other hand, the quantified statement
Vs eS,vteT, P(s, t)
can be expressed iri words as

For every positive even integer s and every
positive odd integer t,2° + 3" is prime.

The statement (7.2) is false since
P(6,3):2% 4+ 33 =91 is a prime.
is false, as 91 = 7 - 13 is not a prime. ¢

Let P(s, t) be an open sentence, where the domain of the variable s is S and the
domain of the variable ¢ is T. Recall that the negations of the quantified statements
I5e8,3teT,P(s,t)andVs € §S,Vt € T, P(s, t) are

~@3se8,#eT, P(s,t)=VseS,VteT,~P(s,1)
and

~(VseS VteT, P(s,)=3s€8,AteT,~P(s,1).

Therefore, the negation of the statement (7.1) is
For every positive even integer s and every positive odd integer ¢, 2° + 3" is not prime.
which is a false statement. On the other hand, the negation of the statement (7.2) is

There exist a positive even integer s and a
positive odd integer ¢ such that 2* + 3’ is not prime.

which is a true statement.

Quantified statements may also contain different kinds of quantifiers. For example, it
follows by the definition of an even integer that for every even integer n, there exists an in-
teger k such that n = 2k. There is another mathematical symbol with which you should be
familiar. The symbol > denotes the phrase such that (although some mathematicians sim-
ply write s.t. for “such that”"). For example, let S denote the set of even integers again. Then

YaneS, dkeZ>n=2k (1.3)
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states:

For every even integer n, there exists an integer k such that n = 2k.
This statement can be reworded as:

If nis an even integer, then n = 2k for some integer k.

If we interchange the two quantifiers in (7.3), we obtain, in words:

There exists an even integer n such that for every integer k, n = 2k.
This statement can also be reworded as

There exists an even integer n such that n = 2k for every integer k.
This statement :can be expressed in symbols as

dneS, Vkel, n=2k. 7.4

Certainly, the statements (7.3) and (7.4) say something totally different. Indeed, (7.3) is
true and (7.4) is false.
Another such example of this is

For every real number x, there exists an integer n such that [x — n| < 1. (7.5)
This statement can also be expressed as
If x is a real number, then there exists an integer n such that |x — n| < 1.
In order to state (7.5) in symbols, let
Px,n): |x—nl<1

where the domain of the variable x is R and the domain of the variable # is Z. Thus (7.5)
can be expressed in symbols as

Vx eR,3n € Z, P(x, n).

The statement (7.5) is true, as we now verify.

For every real number x, there exists an integer n such that |x — n| < 1.

Let x be a real number. If we let n = [x], where, recall, [x] denotes the smallest integer
that is greater than or equal to x, then |x —n| = [x — [x]| = [x] —x < 1. @

Another example of a quantified statement containing two different quantifiers is
There exists a positive even integer m such

o — i . 11 1
that for every positive integer n, =l <3 (7.6)

Let S denote the set of positive even integers and let

P(m,n): |1 -1 <

1
m n 2°

where the domain of the variable m is § and the domain of the variable »n is N. Thus,
(7.6) can be expressed in symbols as

dm e S,¥n € N, P(m, n).

The truth of the statement (7.6) is now verifed.
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Result 7.4  There exists a positive even integer m such that for every positive integer n,
I 1 1 1
<

T |

m n

Proof Consider m = 2. Let n be a positive integer. We consider three cases.

Case 1.n = 1. Then |+

ll Il l| 1

" 271 2 |
— 1L |1 _ 1] — 1

Case2.n—2.Then|%—— ;l = \E"E' =0<3.

L 1) 1 1)t _1_1
Cas_e'3.nz3.Then|E—E|—li—ﬂ_i—;<5‘ :II
Thus|%—%|§%f0reveryneN. m J

Let P(s, t) be an open sentence, where the domain of the variable s is S and the
domain of the variable ¢ is T. The negation of the quantified statement ¥s € §, 3t €

T, P(s,t)is
~VseS,IteT,P(s,))=3Fs€S§,~3t T, P(s, 1))
=3IseS,VteT,~P(s,t)
while the negation of the quantified statement 3s € S, V¢ € T, P(s,t)is
~@seS,VteT,P(s,))=VseS,~¥ T, P(s,t)
=VseS,teT,~P(s,t).
Consequently, the negation of the statement (7.5) is
There exists a real number x such that for every integer n, |x —n| > 1. T
This statement is therefore false. The negation of the statement (7.6) is

For every positive even integer m, there exists

a positive integer n such that I%— %| > % "

This too is false.
Let’s consider the following statement, which has more than two quantifiers.

For every positive real number e, there exists a positive real number d
such that for every real number x, |x| < d implies that |2x| < e. (1.7

If we let
P@,d): |x| <d and Q(x,e): |2x| < e

where the domain of the variables e and d is Rt and the domain of the variable x is R,
then (7.7) can be expressed in symbols as

Ye e RY,3d e RY,Vx e R, P(x,d) = Q(x, e).

The statement (7.7) is in fact true, which we now verify.

Result 7.5 For every positive real number e, there exists a positive real number d such that if x is
a real number with |x| < d, then |2x| < e.
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Let e be a positive real number. Now choose d = e/2. Let x be a real number with
|x] < d =e/2. Then

12x] = 2|x| < 2 (%) —e,

as desired. "

7.3 Testing Statements —]

Example 7.6

Strategy

Solution of
Example 7.6

Example 7.7

Strategy

Solution

Proof

We now turn our attention to the main topic of this chapter. For a given statement whose
truth value is not provided to us, our task is to determine the truth or falseness of the
statement and, in-addition, show that our conclusion is correct by proving or disproving
the statement, as appropriate.

Prove or disprove: There is a real number solution of the equation
0 4+2x2+1=0.

Observe that x and x2 are even powers of x. Thus if x is any real number, then x® > 0
and x2 > 0, so 2x? > 0. Adding 1 to x5 4+ 2x2 shows that x® + 2x% 4+ 1 > 1. Hence it
is impossible for x® 4 2x% + 1 to be 0. These thoughts lead us to our solution. We begin
by informing the reader that the statement is false, so the reader knows what we will be
trying to do. ¢

The statement is false. Let x € R. Since x® > 0 and x2 > 0, it follows that x® + 2x2 +
1>1landsox®+2x2+1#0. ¢

For the preceding example, we wrote “Strategy” rather than “Proof Strategy” for two
reasons: (1) Since the statement may be false, there may be no proof in this case. (2) We
are essentially “thinking out loud”, trying to convince ourselves whether the statement
is true or false. Of course, if the statement turns out to be true, then our strategy may
very well turn into a proof strategy.

Prove or disprove: Let x, v, z € Z. Then two of the integers x, y, and z are of the same
parity.

For any three given integers, either two are even or two are odd. So it certainly seems
as if the statement is true. The only question appears to be whether what we said in the
preceding sentence is convincing enough to all readers. We try another approach. ¢

The statement is true.

Consider x and y. If x and y are of the same parity, then the proof is complete. Thus
we may assume that x and y are of opposite parity, say x is even and y is odd. If z is
even, then x and z are of the same parity; while if z is odd, then y and z are of the same
parity. L]

Of course, the preceding proof could have been done by cases as well.




