Sets

n this initial chapter, you will be introduced to, or more than likely be reminded of, a
fundamental idea that occurs throughout mathematics: sets, Indeed, a set is an object
from which every mathematical structure is constructed (as we will often see in the
succeeding chapters). Although there is a formal subject called set theory in which the
properties of sets follow from a number of axioms, this is neither our interest nor our
need. It is our desire to keep the discussion of sets informal without sacrificing clarity.
It is almost a certainty that portions of this chapter will be familiar to you. Nevertheless,
it is important that we understand what is meant by a set, how mathematicians describe
sets, the notation used with sets, and several concepts that involve sets.
You’ve been experiencing sets all your life. In fact, all of the fol lowing are examples
of sets: the members of a sports team, the items on a shopping list, the integers. As a
small child, you learned to say the alphabet. When you did this, you were actually listing
the letters that make up the set we call the alphabet. A set is a collection of objects.
The objects that make up a set are called its elements (or members). The elements of a
softball team are the players, while the elements of the alphabet are letters.
It is customary to use capital (uppercase) letters (suchas A, B,C, S, X,Y ) to des-
ignate sets and lowercase letters (for example, a, b, c, §, x, y) to represent elements of

sets. If a is an element of the set A, then we write a € A; if a does not belong to A, then
we write a ¢ A.

1.1 Describing a Set j

There will be many occasions when we (or you) will need to describe a set. The most im-
portant requirement when describing a set is that the description makes it clear precisely
which elements belong to the set.

If a set consists of a small number of elements, then this set can be described by
explicitly listing its elements between braces (curly brackets) where the elements are
separated by commas. Thus S = {1, 2, 3} is a set, consisting of the numbers 1. 2. and 3.
The order in which the elements are listed doesn’t matter. Thus the set § just mentioned
could be written as § = {3,2,1}or § = {2, 1, 3}, for example. They describe the same
set. If aset T consists of the first five letters of the alphabet, then it is not essential that we
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Example 1.1

write T = {a, b, ¢, d, e}, thatis, the elements of T need not be listed in alphabetical order.
On the other hand, listing the elements of T in any other order may create unnecessary
confusion.

The set A of all people who signed the Declaration of Independence and later became
president of the United States is A = {John Adams, Thomas Jefferson} and the set B of
all positive even integers less than 20 is B = 2,4,6,8,10, 12, 14, 16, 18}. Some sets
contain too many elements to be listed this way. Perhaps even the set B just given contains
too many elements to describe in this manner. In such cases, the ellipsis or “three dot
notation” is often helpful. For example, X = {1, 3,5, ..., 49} is the set of all positive
odd integers less than 50, while Y = {2,4,6, .. .} is the set of all positive even integers.
The three dots mean “and so on” for ¥ and “and so on up to” for X. A set need not
contain any elements. Although it may seem peculiar to consider sets without elements,
these kinds of sets occur surprisingly often and in a variety of settings. For example,
if S is the set of real number solutions of the equation x> + 1 = 0, then S contains no
elements. There is only one set that contains no elements, and it is called the empty set
(or sometimes the null set or void set). The empty set is denoted by #. We also write
% = { }. In addition to the example given above, the set of all real numbers x such that
x? < 0is also empty.

The elements of a set may in fact be sets themselves. The symbol ¢ below indicates
the conclusion of an example.

The set S = {1,2,{1,2}, 8} consists of four elements, two of which are sets, namely,
(1,2} and 8. If we write C = {1, 2}, then we can also write S = {1,2,C, @}.

The set T = {0, {1, 2,3}, 4, 5} also has four elements, namely, the three integers
0,4, and 5, and the set {1,2,3}. Even though 2 € {1, 2, 3}, the number 2 is not an
element of T, thatis,2 ¢ T . ¢

Often sets consist of those elements satisfying some condition or possessing some speci-
fied property. In this case, we can define suchasetas § = {x : p(x)}, where, by this, we
mean that S consists of all those elements x satisfying some condition p(x) concerning
x. Some mathematicians write S = {x | p(x)}; that is, some prefer to write a vertical
line rather than a colon (which, by itself here, is understood to mean “such that™). For
example, if we are studying real number solutions of equations, then

S=1{x: (x— Dx+2)x+3)=0}

is the set of all real numbers x such that (x — 1){(x + 2)(x + 3) = 0, that is, S is the
solution set of the equation (x — 1)(x 4+ 2)(x + 3) = 0. We could have written § =
{1, —2, —3}; however, even though this way of expressing S is apparently simpler, it
does not tell us that we are interested in the solutions of an equation. The absolute value
|x| of a real number x is x if x > 0; while |x| = —x if x < 0. Therefore,

T={x: x| =2}

is the set of all real numbers having absolute value 2; that is, T = {2, —2}. In the sets S

and T that we have just described, we understand that “x” refers to a real number x. If
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1.1 Describing a Set 15

there is a possibility that this wouldn’t be clear to the reader, then we should specifically
say that x is a real number. We’ll say more about this soon. The set

P ={x: x has been a president of the United States}

describes, rather obviously, all those individuals who have been president of the United
States. So Abraham Lincoln belongs to P, but Benjamin Franklin does not.

Let A={3,4,5,...,20}.If B denotes the set consisting of those elements of A that are
less than 8, then we can write

B={xecA:x<8={34567) ¢

Some sets are encountered so often that they are given special notation. We use N to
denote the set of all positive integers (or natural numbers); that is, N = {1,2,3,...}.
The set of all integers (positive, negative, and zero) is denoted by Z. S0 Z = {..., —2, — 1,
0, 1,2, ...}. With the aid of the notation we’ve just introduced, we can now describe the
set E={...,—4,-2,0,2,4,...} of even integers by

E ={y: yisaneveninteger} or E = {2x : x is an integer}, or as
E={y: y=2xforsomex €Z} or E={2x: x € Z}.
Also,

S={x%: xis an integer} = {x%?: x € Z} = {0, 1, 4, 9,...}

describes the set of squares of integers.

The set of real numbers is denoted by R and the set of positive real numbers is
denoted by R™. A real number that can be expressed in the form ’,’—7’, where m, n € Z and
n # 0, is called a rational number. For example, %, =2, 17 = &I and % are rational
numbers. The set of all rational numbers is denoted by Q. Of course, % = % A real
number that is not rational is called irrational. The real numbers «/E, «/5, Q/E, m,and e
are known to be irrational; that is, none of these numbers can be expressed as the ratio of
two integers. It is also known that the real numbers with infinite nonrepeating decimal
expansions are precisely the irrational numbers. There is no common symbol to denote
the set of irrational numbers. We will use I for the set of all irrational numbers. Thus,
ﬁeRand«/EgéQ;so«/EeI.

For a set §, we write [S| to denote the number of elements in S. The number
S| is also referred to as the cardinal number or cardinality of S. If A = {1,2} and
B =1{1,2,{1,2},4},then |[A| =2 and |B| = 4. Also, |#] = 0. Although the notation is
identical for the cardinality of a set and the absolute value of a real number, we should
have no trouble distinguishing between the two. A set S is finite if [§| = n for some
nonnegative integer 7. A set § is infinite if it is not finite. For the present, we will use
the notation || only for finite sets S. In Chapter 10, we will discuss the cardinality of
infinite sets.

Let’s now consider a few examples of sets that are defined in terms of the special
sets we have just described.
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Example 1.3 LetD={neN: n<9,E={xeQ: x<9,H={xeR:x*-2=0},andJ =

Solution

(xeQ: x2—-2=0}
(a) Describe the set D by listing its elements.
(b) Give an example of three elements that belong to E but do not belong to D.
(¢) Describe the set /7 by listing its elements.
(d) Describe the set J in another manner.
(e) Determine the cardinality of each set D, H, and J.
(@) D=1{1,2,3,4,56,7,89}
(b 1,0,-3.
(© H={2,-V2)
@ J =9
(e) |D|=9,|H|=2,and |/| =0. ¢

A complex number is a number of the form a + bi,wherea,b € Randi = 1.
A complex number a + bi, where b = 0, can be expressed as a + 0i or, more simply, as
a. Hence a + 0i = a is a real number. Thus every real number is a complex number. Let
C denote the set of complex numbers. If K = {x € C: x*4+1=0),then K = {i, —i}.
Of course, if L = {x e R : x2 4+ 1 =0}, then L = . You might recall that the sum of
two complex numbers a + bi and ¢ +di is (@ +¢) + (b + d)i, while their product is

(a4 bi) (c+di)=ac+adi + bci + bdi* = (ac — bd) + (ad + bo)i.

The special sets that we’ve just described are now summarized as follows:

symbol for the set of
N natural numbers (positive integers)
Z integers
Q rational numbers
I irrational numbers
R real numbers
C complex numbers

L

1.2 Subsets J

Example 1.4

A set A is called a subset of a set B if every element of A also belongs to B. If Aisa
subset of B, then we write A € B.If A, B, and C are sets suchthat A C Band B & C,
then A C C. This property of subsets might remind you of the property of real numbers
where if @, b, ¢ € Rsuch thatifa < band b < ¢, then a < c. For the scts X ={1,3,6}
and Y ={1,2,3,5,6},wehave X C Y. Also, NC Zand Q € R. In addition, R C C.
Since Q € Rand R C C, it therefore follows that Q C C.Moreover, every set is a subset
of itself.

Find two sets A and B such that A is both an element and a subset of B.
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Suppose that we seek two sets A and B such that A € B and A C B. Let’s start with
a simple example for A, say A = {1}. Since we want A € B, the set B must contain
the set {1} as one of its elements. On the other hand, we also require that A C B, so
every element of A must belong to B. Since 1 is the only element of A, it follows that B
must also contain the number 1. A possible choice for B is then B = {1, {1}}, although
B = {1, 2, {1}} would also satisfy the conditions. ¢

If a set C is not a subset of a set D, then we write C & D. In this case, there must
be some element of C that is not an element of D. One consequence of this is that the
empty set @ is a subset of every set. If this were not the case, then there must be some
set A such that @ ¢ A. But this would mean there is some element, say x, in @ that is
not in A. However, @ contains no elements. So J C A for every set A.

Let § = {1, {2}, {1, 2}}.

(a) Determine which of the following are elements of S:
1,{1}, 2, {2}, {1, 2}, ({1, 2}}.
(b) Determine which of the following are subsets of S:

{15 {20, {1, 21 ({1}, 23 {1, (200, {00, {233, {41, 23

(a) The following are elements of S: 1, {2}, {1, 2}.
(b) The following are subsets of S: {1}, {1, {2}}, {{1, 2}}. ¢

In a typical discussion of sets, we are ordinarily concerned with subsets of some
specified set U, called the universal set. For example, we may be dealing only with
integers, in which case the universal set is Z, or we may be dealing only with real
numbers, in which case the universal set is R. On the other hand, the universal set being
considered may be neither Z nor R. Indeed, U may not even be a set of numbers,

Some frequently encountered subsets of R are the so-called “intervals”. For a,beR
and a < b, the open interval (a, b) is the set

(a,b)={xeR: a<x<b).

Therefore, all of the real numbers %, \/5, e,3,m, 4.99 belong to (2, 5), but none of the
real numbers «/i, 1.99, 2, 5 belong to (2, 5).
Fora,b € Rand a < b, the closed interval [q, b] is the set

la,bl={xeR: a <x <b}.

While 2, 5 ¢ (2, 5), wedo have 2, 5 € [2, 5]. The “interval” [a, a] is therefore {a}. Thus,
fora < b, wehave (a, b) C [a, b]. Fora, b € Randa < b, the half-open or half-closed
intervals [a, b) and (a, b] are defined as expected:

[a,b)={x eR: a<x<b}and(a,b]={x eR: a <x < b}.

For a € R, the infinite intervals (—oo0, a), (—oo, al, (a, 00), and [a, 00) are defined

as

(—o0,a)={xeR: x<a}, (~o0,al={xeR: x < a},
(@,0)={xeR: x>a}, [a,00)={xeR; x > a}l.
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Example 1.6

Solution

Figure 1.1  Venn diagrams for two sets A and B

The interval (—oo, 00) is the set R. Note that the infinity symbols co and —oo are not
real numbers; they are used only to help describe certain intervals. Therefore, [1, oo],
for example, has no meaning,.

Two sets A and B are equal, indicated by writing A = B, if they have exactly the
same elements. Another way of saying A = B is that every element of A is in B and
every element of B isin A, that is, A € Band B € A. This fact will be very useful to us
in Chapter 4. If A # B, then there must be some element that belongs to one of A and
B but does not belong to the other.

It is often convenient to represent sets by diagrams called Venn diagrams. For
example, Figure 1.1 shows Venn diagrams for two sets A and B. The diagram on the left
represents two sets A and B that have no elements in common, while the diagram on the
right is more general. The element x belongs to A but not to B; the element y belongs
to B but not to A; the element z belongs to both A and B; and w belongs to neither A
nor B. In general, the elements of a set are understood to be those displayed within the
region that describes the set. A rectangle in a Venn diagram represents the universal set
in this case. Since every element under consideration belongs to the universal set, each
element in a Venn diagram lies within the rectangle.

A set A is a proper subset of a set B if A € B but A # B. If A is a proper subset
of B, then we write A C B. For example, if S = {4,5,7} and T = {3,4,5, 6,7}, then
S C T. (Although we write A C B to indicate that A is a proper subset of B, it should
be mentioned that some prefer to write A C B to indicate that A is a proper subset of
B. Indeed, there are some who write A C B, rather than A C B, to indicate that A is a
subset of B. We will follow the notation introduced above, however.)

The set consisting of all subsets of a given set A is called the power set of A and is
denoted by P(A).

For each set A below, determine P(A). In each case, determine |A| and |P(A)|.
a A=0, (b A={a,b}, () A={1,2,3}

(a) P(A) = {#}. In this case, |A] = 0 and |P(A)| = L.
(b) P(A) = (4, {a}, {b}, {a, b}}. In this case, |A| = 2 and |P(A)| = 4,

() PA)=1{0,{1},{2}, {3}, {1,2}, (1,3}, {2,3}, {1, 2, 3}}.
In this case, |A| = 3 and |P(A)| = 8. ¢
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Notice that for each set A in Example 1.6, we have |P(A)| = 2/41. In fact, if A is
any finite set, with n elements say, then 7(A) has 2" elements; that is,

P4 =2

for every finite set A. (Later we will explain why this is true.)

IfC = {8, {¥}}, then

P(C) = {0, {0}, {{0}), {9, {2}}}.

It is important to note that no two of the sets @, {#}, and {{@}} are equal. (An empty box
and a box containing an empty box are not the same.) For the set C above, it is therefore
correct to write

pcC,ocCpeC.{PycC,{@cC,{¥ecC,

as well as

{oy c C, {{8}} ¢ C, {{B}} € P(O). ¢

1.3 Set Operations ]

Example 1.8

Just as there are several ways of combining two integers to produce another integer
(addition, subtraction, multiplication, and sometimes division), there are several ways
to combine two sets to produce another set. The union of two sets A and B, denoted by
AU B, is the set of all elements belonging to A or B; that is,

AUB={x: xe€Aorx < B)}.

The use of the word “or” here, and in mathematics in general, allows an element of
AU B to belong to both A and B. That is, x isin AUB if x isin A or x is in B or x is
in both A and B. A Venn diagram for A U B is shown in Figure 1.2.

For the sets A1 =1{2,5,7,8}, A, = {1, 3,5}, and A3 = {2, 4, 6, 8}, we have
AlUA;=1{1,2,3,5,7,8]},
AlUA; =1{2,4,5,6,7, 8},
AyUA3=1{1,2,3,4,5,6,8).

Also, NUZ =Z andQUI =R, ¢

A B

Figure 1.2 A Venn diagram for AU B
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Figure 1.3 A Venn diagram for AN B

The intersection of two sets A and B is the set of all elements belonging to both A
and B. The intersection of A and B is denoted by A N B. In symbols,

ANB={x: xe Aand x € B}.
A Venn diagram for A N B is shown in Figure 1.3.

For the sets Ay, Ay, and Aj described in Example 1.8,
AINA;={5}, AiNA; ={2,8},and A, N Ay = 0.
Also NNZ=NandQNR =Q. ¢

For every two sets A and B, it follows that
ANBC AUB.

If two sets A and B have no elements in common, then AN B =@ and A and B
are said to be disjoint. Consequently, the sets A, and A described in Example 1.8 are
disjoint; however, A and A3 are not disjoint since 2 and 8 belong to both sets. Also, Q
and I are disjoint.

The difference A — B of two sets A and B (also written as A \ B by some mathe-
maticians) is defined as

A—B={x: xecAandx ¢ B}.

A Venn diagram for A — B is shown in Figure 1.4.

Figure 1.4 A Venn diagram for A — B
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( +)

Figure 1.5 A Venn diagram for A

For the sets Ay = {2,5,7,8} and Ay = (1,3, 5} in Examples 1.8 and 1.9, A} — A; =
{2,7,8}and Ay — Ay = {1, 3}. Furthermore, R — Q = L. ¢

Suppose that we are considering a certain universal set U; that is, all sets being
discussed are subsets of U For a set A, its complement is

A=U-A={x:xeUandx ¢ A).

EU=meﬁ=w;m—lthMKU=Kmm6=LA%m&@mMm
A is shown in Figure 1.5.

The set difference A — B is sometimes called the relative complement of B in
A. Indeed, from the definition, A — B = {x : xe Aand x ¢ B). The set A — B can

also be expressed in terms of complements, namely, A — B = A N B. This fact will be
established later.

Let U ={1,2,..., 10} be the universal set, A = (2,3,5,7}, and B = {2,4,6,8,10).
Determine each of the following:

@ B, (b) A—B, () ANB, () B.

(@ B=1{1,3,5,7,9].

) A—B=1(3,57).

(0 ANB={3,5,7)=A—B.

@ B=B=1{2468,10). ¢

Example 1.12  Let A = {0, {0}, {0, {0}}}.

(a) Determine which of the following are elements of A: 0, {0}, {{0}}.

(b) Determine |A|.

(c) Determine which of the following are subsets of A: 0, {0}, {{0}}.
For (d)—(i), determine the indicated sets.

@ {O4nA

) {oitna

® {{oHnA

{ojuA
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(h)
(1
Solution (a)
(b)
(©

()
)
(®
€9

(h)
®

{ojpu A
{t{O}}} U A.

While 0 and {0} are elements of A, {{0}} is not an element of A.
The set A has three elements: 0, {0}, {0, {0} }. Therefore, |A| = 3.

The integer 0 is not a set and so cannot be a subset of A (or a subset of any
other set). Since 0 € A and {0} € A, it follows that {0} C A and {{0}} C A.

Since O is the only element that belongs to both {0} and A, it follows that

{0} N A ={0}.

Since {0} is the only element that belongs to both {{0}} and A, it follows that
{{0}}n A = {{0}}.

Since {{0}} is not an element of A, it follows that {{{0}}} and A are disjoint
sets and so {{{0}}] N A = @.

Since 0 € A, it follows that {0} U A = A.
Since {0} € A, it follows that {{0}} U A = A.
Since {{0}} ¢ A, it follows that {{{0}}} U A = {0, {0}, {{0}}, {0, {O}}}. ¢ L

[ 1.4 Indexed Collections of Sets ]

We will often encounter situations where more than two sets are combined using the set
operations described above. In the case of three sets A, B, and C, the standard Venn
diagram is shown in Figure 1.6.

The union A U B U C is defined as

AUBUC={x:xe€AorxeBorxeCl

Thus, in order for an element to belong to A U B U C, the element must belong to at
least one of the sets A, B, and C. Because it is often useful to consider the union of
several sets, additional notation is needed. The union of the n > 2 sets A, As, ..., A,
is denoted by A U A, U--- U A, or | J;_; A; and is defined as

n
UAiz{x: x € A; forsomei, 1 <i <nj.

i=1

A B

C

Figure 1.6 A Venn diagram for three sets
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Thus, for an element @ to belong to | J_, A;, it is necessary that a belongs to at least one
of the sets A;, Ay, ..., A,.

Example 1.13  Let By ={1,2}, B, =1{2,3},..., Bijo={10,11}; that is, By ={i,i +1} for i =
1,2,...,10. Determine each of the following:

3 10 7 k
@ Js. ® JB. © |JB. @ \JBi, where 1 < j <k < 10.
i=1 i=1 i=3

i=j

10
Solution (a) B, ={1,2,...,6}. (b) UB,' ={1,2,...,11}.

i=1

o

Il
=

k
Bi=(3,4,....8). @ UBi=0.j+1....k+1} ¢

i=j

(©

-

Il
w

!

We are often interested in the intersection of several sets as well. The intersection
of then > 2 sets Ay, Ay, ..., A, isexpressedas Ay N A;N---N A, or ﬂLl A; and is
defined by

n
ﬂA,- ={x: xe€ A foreveryi,1 <i <n}.

i=1
The next example concerns the sets mentioned in Example 1.13.
Example 1.14 Let B; = {i,i + 1} fori = 1,2, ..., 10. Determine the following:
10 4!
@ ()Bi. ®)BiNBuy. (o) )Bi, wherel < j < 10.
i=1 i=j

k
(d) [)Bi where 1 < j < k < 10.
i=j

10 j+1
Solution @ [\B:=0. () BiNBiy={i+1). © (B ={ji+1kL
i=1 i=j
k k
@ ()Bi={j+1}ifk=j+1; while[|B; =@ifk > j+1. ¢
(= i=]

There are instances when the union or intersection of a collection of sets cannot be
described conveniently (or perhaps at all) in the manner mentioned above. For this reason,
we introduce a (nonempty) set /, called an index set, which is used as a mechanism for
selecting those sets we want to consider. For example, for an index set I, suppose that
there is a set S, for each o € I. We write {S,}oes to describe the collection of all sets
Sy, where o € I. Such a collection is called an indexed collection of sets. We define the
union of the sets in {Sy}yes bY

US ={x: x € S, for some o € I},

ael
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Example 1.15

Example 1.16

Example 1.17

Example 1.18

and the intersection of these sets by

mSO‘ ={x: xeS,foralla € 7}.

ael

Hence an element a belongs to | J,; S if @ belongs to at least one of the sets in
the collection {Sy}qer, While a belongs to ﬂae[ Sy if a belongs to every set in the
collection {S,}eer. We refer to Uael S, as the union of the collection {S,}.c; and
(Nues Se as the intersection of the collection {S,}ye;. Just as there is nothing special
about our choice of i in [ J'_, A; (that is, we could just as well describe this set by
\Jj=1 Aj, say), there is nothing special about o in Uyes Sa- We could also describe this
set by |, ; Sx. The variables i and « above are “dummy variables™ and any appropriate
symbol could be used. Indeed, we could write J or some other symbol for an index
set.

Forn € N, define S, = {n, 2n}. For example, S; = {1, 2}, S, = {2, 4}, and S4 = {4, 8}.
Then S, U Sy U Sy = {1, 2, 4, 8}. We can also describe this set by means of an index set.
Ifwelet I ={1,2,4}, then

JSe=S1USUS,. ¢
ael
For each n € N, define A, to be the closed interval —%, % of real numbers; that is,

1 1
A, =ixeR: ——<x < —1}.
n n

So Ay =[~1,1], Ay = [—3, 3], A3 = [}, 3], and so on. We have now defined the

sets Ay, Ay, As, . ... The union of these sets can be written as Ay U AU A3 U - or
U2 Ai. Using N as an index set, we can also write this union as U, en An- Since A, €
Ay = [—1, 11 for every n € N, it follows that | J,,.y An = [—1, 11. Certainly, 0 € A, for
every n € Ny in fact, (), oy A = {0} ¢

Let A denote the set of the letters of the alphabet, thatis, A ={a, b, ..., z}. Fora € A,
let A, consist of o and the two letters that follow a. So A, = {a, b, c}and Ay = {b, ¢, d}.
By Ay, wewillmeanthe set{y, z,a}and A, = {z, a, b}. Hence |Ay| = 3foreverya € A.
Therefore, | ) 4 Ae = A. Indeed, if

weh
B={a,d,g jm,p,s, vy}

then \Uycp Ae = A as well. On the other hand, if I ={p,q,r}, then \J,¢; Ay =

{p,q,r, s, t}; while (\,e; Ax = '} ¢

Let S ={1,2,...,10}. Each of the sets
S1=1{1,2,3,4}, S, ={4,5,6,7,8}, and S5 = {7, 8,9, 10}

isasubsetof S. Also, S| U 8, U S3 = S. This union can be described in a number of ways.
Define I = {1,2,3} and J = {S1, Sz, Sa}. Then the union of the three sets belonging to
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J is precisely Sy U Sy U S3, which can also be written as

3
S=S1US2US3:USi=US =Jx ¢
i=1

ael Xel

1.5 Partitions of Sets j

Example 1.19

Solution

Recall that two sets are disjoint if their intersection is the empty set. A collection S of
subsets of a set A is called pairwise disjoint if every two distinct subsets that belong to S
are disjoint. For example, let A = {1,2,...,7),B = {1, 6},C = {2,5},D = {4,7},and
§ ={B,C, D}. Then § is a pairwise disjoint collection of subsets of A since BN C =
BND =CND =¢. On the other hand, let A’ = {1,2,3}, B’ ={1,2}, C' = {1, 3},
D" ={2,3), and §' = {B’, C’, D'}. Although §' is a collection of subsets of A’ and
B'NC'N D" = @,theset S’ is not a pairwise disjoint collection of sets since B’ N C’ % 0,
for example. Indeed, B’ N D’ and C' N D’ are also nonempty.

We will often have the occasion (especially in Chapter 8) to encounter, for a
nonempty set A, a collection S of pairwise disjoint nonempty subsets of A with the
added property that every element of A belongs to some subset in S. Such a collection
is called a partition of A. A partition of A can also be defined as a collection S of
nonempty subsets of A such that every element of A belongs to exactly one subset in S.
Furthermore, a partition of A can be defined as a collection S of subsets of A satisfying
the three properties:

(1) X #0@foreveryset X € S;
(2) foreverytwosets X,Y € S,either X =Y orXNY = ?;
B) UxesX = 4.

Consider the following collections of subsets of the set A = {1, 2, 3,4, 5, 6}:

§1={{1,3,6}, (2,4}, {5}};
Sy = {{1,2,3}, {4}, 4, {5, 6}};
§3 = {{1,2},{3,4,5}, {5, 6}};
Sq = {{1,4},{3, 5}, (2}}.

Determine which of these sets are partitions of A.

The set S is a partition of A. The set S, is not a partition of A since @ is one of the
elements of §,. The set S5 is not a partition of A either since the element 5 belongs to
two distinct subsets in S3, namely, {3, 4, 5} and {5, 6). Finally, S, is also not a partition
of A because the element 6 belongs to no subset in Sy. ¢

As the word “partition” probably suggests, a partition of a nonempty set A is a
division of A into nonempty subsets. The partition S, of the set A in Example 1.19 is
illustrated in the diagram shown in Figure 1.7.

For example, the set Z of integers can be partitioned into the set of even integers
and the set of odd integers. The set R of real numbers can be partitioned into the set R*
of positive real numbers, the set of negative real numbers, and the set {0} consisting of
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Example 1.20

Solution

Figure 1.7 A partition of a set

the number 0. In addition, R can be partitioned into the set Q of rational numbers and
the set I of irrational numbers.

Let A={1,2,...,12}.

(a) Give an example of a partition S of A such that |S| = 5.
(b) Give an example of a subset T' of the partition S in (a) such that |T'| = 3.
(c) List all those elements B in the partition S in (a) such that |B| = 2.

(a) We are seeking a partition S of A consisting of five subsets. One such
example is
§={{1,2},{3,4},{5,6}, {7, 8,9}, {10, 11, 12}}.

We are seeking a subset T of S (given in (a)) consisting of three elements.
One such example is

T =1{{1,2}, (3,4}, {7, 8,9}}.

We have been asked to list all those elements of S (given in (a)) consisting of
two elements of A. These elements are: {1, 2}, {3, 4}, {5, 6}. ¢

1.6 Cartesian Products of Sets ]

We’ve already mentioned that when a set A is described by listing its elements, the order
in which the elements of A are listed doesn’t matter. That is, if the set A consists of two
elements x and y, then A = {x, y} = {y, x}. When we speak of the ordered pair (x, y),
however, this is another story. The ordered pair (x, y) is a single element consisting of a
pair of elements in which x is the first element (or first coordinate) of the ordered pair
(x,y) and y is the second element (or second coordinate). Moreover, for two ordered
pairs (x, y) and (w, z) to be equal, that is, (x, y) = (w, z), we must have x = w and
y = z. 80, if x # y, then (x, y) # (v, x).

The Cartesian product (or simply the product) A x B of two sets A and B is the
set consisting of all ordered pairs whose first coordinate belongs to A and whose second
coordinate belongs to B. In other words,

AXxB={(a,b)ac Aand b € B}.
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Example 121 If A = {x, y} and B = (1, 2, 3}, then
AXxB={(x,1),(,2),(x3),(y 1), 2,03}
while
B x A={(1x),(1,y)(2x),(2,y),03,x),3 )}

Since, for elxample, (x,1)e Ax B and (x,1) ¢ B x A, these two sets do not contain
the same elements; so A x B # B x A. Also,

AXxA={x,x),x ), x),0Q N}
and
BxB={1,1),1,2),1,3),2,1), (2,2),(2,3),(3,1),(3,2), (3, 3. ¢

We also note thatif A =@ or B =@, then A x B = {J.
The Cartesian product R x R is the set of all points in the Euclidean plane. For || .
example, the graph of the straight line y = 2x + 3 is the set !

{(x,y) e RxR: y=2x+3}.

Forthe sets A = {x, y} and B = {1, 2, 3} given in Example 1.21, |A| = 2 and |B| = '
3; while |A x B| = 6. Indeed, for all finite sets A and B,

|A x B| = |A| - |B]. |

Cartesian products will be explored in more detail in Chapter 7.

Section 1.1: Describing a Set
1.1.

1.2.

1.3.

Which of the following are sets?
(@ 1,2,3

(b) {1,2},3

(© {{1},2},3

(d {1, {2}, 3}

(e) {1,2,a,b)

Let § = {-2,-1,0, 1, 2, 3}. Describe each of the following sets as {x € S : p(x)}, where p(x) is some
condition on x.

(a) A=1{1,2,3)
(b) B=1{0,1,2,3}
(©) C ={-2,-1}.

) D ={-2,2,3).

Determine the cardinality of each of the following sets:
(@ A=1{1,2,3,4,5)

(b) B =1{0,2,4,...,20}

(c) C =({25,26,27,...,75}




