( 4.4 Proofs Involving Sets ]

‘We now turn our attention to proofs concerning properties of sets. Recall, for sets A and
B contained in some universal set U, that the intersection of A and B is

ANB={x : x e Aand x € B},
the union of A and B is

AUB={x : xe Aorx € B},
and the difference of A and B is

A—B={x : xeAandx ¢ B}.

The set A — B is also called the relative complement of B in A, and the relative
complement of A in U is called simply the complement of A and is denoted by A. Thus,
A = U — A.In what follows, we will always assume that the sets under discussion are
subsets of some universal set U.

Figure 4.1 shows Venn diagrams of A — B and A N B for arbitrary sets A and B.
The diagrams suggest that these two sets are equal. This is, in fact, the case. Recall that
to show the equality of two sets C and D, we can verify the two set inclusions C € D

A-B ANB

Figure4.1  Venn diagrams for A — Band ANB
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and D C C. To establish the inclusion C € D, we show that every element of C is also
an element of D; thatis, if x € C then x € D. This is accomplished with a direct proof,
by letting x be an (arbitrary) element of C and showing that x must belong to D as well.
Recall that we need not be concerned if C contains no elements; for in this case x € C
is false for every element x and so the implication “If x € C, then x € D.” is true for
all x € U. As a consequence of this observation, if C = @, then C contains no elements
and it follows that C C D.

For every two sets A and B,
A—B=ANB.

First we show that A — B C ANB.Letx € A— B.Thenx € Aand x ¢ B. Since x ¢
B, it follows that x € B. Therefore, x € Aand x € B;sox € AN B. Hence A — B C
ANB.

Next we show that ANB C A— B.Lety e ANB.Theny € Aand y € B. Since
y € B,weseethaty ¢ B. Now because y € Aand y ¢ B, we conclude that y € A — B.
Thus, ANB C A — B. e

In the second paragraph of the proof of Result 4.18, we used y (rather than x) to denote
an arbitrary element of A N B. We did this only for variety. We could have used x twice.
Once we decided to use distinct symbols, y was the logical choice since x was used
in the first paragraph of the proof. This keeps our use of symbols consistent. Another
possibility would have been to use a in the first paragraph and b in the second. This has
some disadvantages, however. Since the sets are being called A and B, we might have a
tendency to think that ¢ € A and b € B, which may confuse the reader. For this reason,
we chose x and y over a and b.

Before leaving the proof of Result 4.18, we have one other remark. At one point
in the second paragraph, we learned that y € A and y ¢ B. From this we could have
concluded (correctly) that y ¢ A N B, but this is not what we wanted. Instead, we wrote
that y € A — B. It is always a good idea to keep our goal in sight. We wanted to show
that y € A — B; so it was important to keep in mind that it was the set A — B in which
we were interested, not A N B. ¢

Next, let’s consider the Venn diagrams for (AU B) — (AN B) and (A — B)U
(B — A), which are shown in Figure 4.2. From these two diagrams, we might

A e - B A . _— B

(AUB)— (AN B) (A—B)U(B - A)
Figure 4.2  Venn diagrams for (AU B) — (AN B)and (A — B)U (B — A)
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conclude (correctly) that the two sets (AU B) — (AN B) and (A — B)U (B — A) are
equal. Indeed, all that is lacking is a proof that these two sets are equal. That is, Venn
diagrams can be useful in suggesting certain results concerning sets, but they are only
drawings and do not constitute a proof.

For every two sets A and B,

(AUB)—(ANB)=(A—B)U(B — A).

First we show that (AUB) — (ANB) C(A—B)U (B—A). Let x € (AUB) —
(ANB). Then x e AUB and x ¢ AN B. Since x € A U B, it follows that x € A or
v € B. Without loss of generality, let x € A. Since x ¢ AN B, the element x ¢ B.
Therefore, x € A — B andsox € (A — B) U (B — A). Hence

(AUB)—(ANB)C(A—-B)U(B — A).

Next we show that (A — B)U(B — A) CS(AUB)— (AN B).letx e (A—B)U
(B—A). Thenx € A—Borx € B —A,say the former. So x € A and x ¢ B. Thus
x € AUBand x ¢ AN B. Consequently, x € (AU B) — (A N B). Therefore,

(A—B)U(B—A)C(AUB)—(ANB),

as desired. n

In the proof of Result 4.19, when we were verifying the set inclusion
(AUB)—(ANB) S (A—B)U(B —A),

we concluded that x € A or x € B. At that point, we could have divided the proof into
two cases (Case 1. x € A and Case 2. x € B); however, the proofs of the two cases
would be identical, except that A and B would be interchanged. Therefore, we decided
to consider only one of these. Since it really didn’t matter which case we handled, we
simply chose the case where x € A. This was accomplished by writing:

Without loss of generality, assume that x € A.

In the proof of the reverse sel containment, we found ourselves in a similar situation,
namely, x € A — B orx € B — A. Again, these two situations were basically identical,
and we simply chose to work with the first (former) situation. (Had we decided to assume
that x € B — A, we would have considered the latier case.) ¢

We now look at an example of a biconditional concerning sets.
Let A and B be sets. Then AUB = A ifand only if B C A.

First we prove thatif AU B = A,then B € A. Weuse a proof by contrapositive. Assume
that B is not a subset of A. Then there must be some element x € B such that x ¢ A.
Since x € B. it follows that x € A U B. However, since x ¢ A, we have AU B # A.
Next we prove the converse, namely, if B € 4, then A U B = A. We use a direct
proof here. Assume that B € A. To verify that AUB = A, we show that A€ AU B
and AU B C A. Thesetinclusion A € AU B is immediate (if x € A, thenx € AUB).
It remains only to show thenthat AUB C A.Lety e AU B. Thusye Aorye B.If
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y € A, then we already have the desired result. If y € B, then since B C A, it follows
thaty € A. Thus AUB C A. ]
PROOF ANALYSIS  In the first paragraph of the proof of Result 4.20 we indicated that we were using a proof
by contrapositive, while in the second paragraph we mentioned that we were using a
direct proof. This really wasn’t necessary as the assumptions we made would inform
the reader what technique we were applying. Also, in the proof of Result 4.20, we used
a proof by contrapositive for one implication and a direct proof for its converse. This
wasn’t necessary either. Indeed, it is quite possible to interchange the techniques we used
(see Exercise 4.28). ¢
[ 4.5 Fundamental Properties of Set Operations ]
Many results concerning sets follow from some very fundamental properties of sets,
which, in turn, follow from corresponding results about logical statements that were
described in Chapter 2. For example, we know that if P and Q are two statements, then
PV Q and Q Vv P are logically equivalent. Similarly, if A and B are two sets, then
AUB = BU A. We list some of the fundamental properties of set operations in the
following theorem. .
Theorem 4.21 For sets A, B, and C,
(1) Commutative Laws
(@) AUB=BUA
(h) ANB=BNA
(2) Associative Laws
(@ AUBUC)=(AUBYUC
by ANBNCYy=ANBYNC
(3) Distributive Laws
(@) AUBNC)=(AUBYN(AUC)
b)) ANBUC)=(ANBYUANC)
(4) De Morgan's Laws
(@) AUB = E N E
() ANB=AUB
We present proofs of only three parts of Theorem 4.21, beginning with the commu-
tative law of the union of two sets.
Proof of Weshowthat AUB € BU A. Assumethatx € AU B.Thenx € Aorx € B. Applying
Theorem 4.21(1a) the commutative law for disjunction of statements, we conclude that x € B or x € A;
sox € BUA. Thus, AUB € B U A. The proof of the reverse set inclusion B U A C
A U B is similar and is therefore omitted. B
Next we verify one of the distributive laws.
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First we show that AU(BNC)C (AU BYN(AUC). Let x € AU(BN C). Then
yeAorxeBNC.Ifxe A, thenx € AUB and x € AUC. Thus x e (AU B)yn
(AU (), as desired. On the other hand, if x € BNC,thenx € B and x € C; and again,
vye AUB and x€ AUC. So xe(AUB)N(AU C). Therefore, AU(BNC) €
(AUB)N(AUC).

To verify the reverse set inclusion, letx € (AUB)N(AUC). Theny € AU B and
v € AUC.Ifx € A, thenx € AU (B NC) Sowemay assume thatx ¢ A.Then the fact
that x €.A U B and x ¢ A implies that x € B. By the same reasoning, x € C. Therefore,
yeBNC,andsox € AUBNC). Therefore, (AUB)N(AUC) S AU(BN C) m

As a final example, we prove one of De Morgan’s laws.

First, we show that AU B € ANB.Letx € AUB. Thenx ¢ AUB. Hence x ¢ A and

x ¢ B. Therefore, x € Aand x € B.sox € ANB. Consequently, AUB € AN B,
Next we show that ANB € AUB. Letx € ANB. Then x € A and x € B. Thus,

xé Aandx ¢ B,sox ¢ AU B. Therefore, x € AU B. Hence ANBCAUB. ]

In the proof of the De Morgan law that we just presented, we arrived at the step x ¢
AU B at one point and then next wrote x ¢ A and x ¢ B. Since x € AU B implies
that v € A or x € B, you might have expected us to write that x ¢ A or x ¢ B after
writing x ¢ A U B; but this would not be the correct conclusion. When we say that
X ¢ AU B, this is equivalent to writing ~(x € A U B), which is logically equivalent to
~((x € A) or (x € B)). By the De Morgan law for the negation of the disjunction of
two statements (or two open sentences), we have that ~((x € A)or (x € B))is logically
equivalent to ~(x € A) and ~(x € B); thatis, x &€ A and x & B. &

Proofs of some other parts of Theorem 4.21 are left as exercises.

L— 4.6 Proofs In;)lving Cartesian Products of Sets J
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Recall that the Cartesian product (or simply the product) A x B of two sets Aand B
is defined as

Ax B={a,b): ac Aand b € B}.

IfA=0orB=0,then AxB=40

Before looking at several examples of proofs concerning Cartesian products of sets,
it is important to keep in mind that an arbitrary element of the Cartesian product A x B
of two sets A and B is of the form (a, b), where a € Aand b € B.

Let A,B,C,and D be sets. If A C C and B C D,then Ax B<CC xD.

Let (x,y) € A x B. Then x € Aand y € B. Since A C C and B C D, it follows that
xeCandyeD.Hence(x,y)eC><D. (]

For sets A, B, and C,

Ax(BUC)=(AxB)U(AXC).
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Exercises for Chapter 4

We first showthat A x (BUC) C (A x B)U(A x C).Let(x,y) € A x (BUC). Then
x€Aandy € BUC.Thusy € B ory € C, say the former. Then (x, y) € A x B, and
so (x,y) € (A x B)U (A x C). Consequently, A x (BUC) C (A x BYU(A x C).
Next we show that (A x BYU(AXxC)C Ax (BUC). Let (x,y) e (Ax B)U
(A xC). Then (x,y) € A X Bor(x,y)e A x C, say the former. Then x € Aand y €
B C BUC. Hence (x,y) € A x(BUC), implying that (A x B)U(A x C)C A x
(BUC(C). (]

We give one additional example of a proof involving the Cartesian products of sets.

For sets A, B, and C,
Ax(B—-C)=(AxB)—(AxC(C).

Firstweshowthat A x (B — C) C (A x B) — (A x C).Let(x, y) € A x (B — C).Then
x € Aandy € B — C.Sincey € B — C,itfollowsthaty € Bandy ¢ C.Becausex € A
and y € B, we have (x, y) € A x B.Since y ¢ C, however, (x, y) ¢ A x C. Therefore,
(x,y)€(AxB)—(AxC).Hence Ax (B—C)C(AxB)—(AxC(C).

We now show that (A X B) —(AXC)YC Ax (B —C). Let (x,y) e (Ax B)—
(AxC). Then (x,y)€ Ax B and (x,y) ¢ A x C. Since (x, y) € A x B, it follows
that x € Aand y € B. Also, since x € A and (x,y) ¢ A x C,itfollowsthaty ¢ C. So
yeEB—C.Thus(x,y) e AXx(B—-C)and(AXxB)—(AXC)CAXx(B-C). =m

We add one comment concerning the preceding proof. During the proof of (A x B) —
(A x C)C A x (B —C), weneeded to show that y ¢ C. We learned that (x, y) ¢ A x
C. However, this information alone did not allow us to conclude that y ¢ C. Indeed, if
(x,y) ¢ AxC,thenx ¢ Aory ¢ C. Since we knew, however, that x € A and (x, y) ¢
A x C, we were able to conclude that y ¢ C. ¢

EXERCISES FOR CHAPTER 4

4.1.
4.2.
4.3.

4.4.

Section 4.1: Proofs Involving Divisibility of Integers

Let ¢ and b be integers, where a # 0. Prove that if a | b, then a? | b,
Leta,b € Z, where a # 0 and b # 0. Prove thatifa | band b | a, thena = bora = —b.

Letm e Z.

(a) Give a direct proof of the following: If 3 | m, then 3 | m?.

(b) State the contrapositive of the implication in (a).

(c) Give a direct proof of the following: If 3 fm, then 3 fm?.

(d) State the contrapositive of the implication in (c).

(e) State the conjunction of the implications in (a) and (¢) using “if and only if”".

Let x, y € Z. Prove that if 3 fx and 3y, then 3 | (x2 — y?).

. Leta, b, c € Z, where a # 0. Prove thatif a fbc, thena /b and a fc.




