
4.4 Proofs Involving Sets

We now tum our attention to proofs concerning properties of sets. Recall, for sets A and
B contained in some universal set U, that the intersection of A and B is

AltB:{x: x e Aandxe B},

the union of A and B is

AUB:{x: x e Aorxe B},

and the difference of A and B is

A-B:{x: x eAandxçB}.
The set A - B is also called the relative complement of B in A, and the relative
complement of A in U is called simply the complement of A and is denoted by ã. Thus,
A : U - A. In what follows, we will always assume that the sets under discussion are

subsets of some universal set U.
Figure 4.1 shows Venn diagrams of A - B and An B for arbitrary sets A and -8.

The diagrams suggest that these two sets are equal. This is, in fact, the case. Recall that
to show the equality of two sets C and D, we can verify the two set inclusions C c D

A B

A-B
Figure 4.1

A¡E
Venn diagrams for A - B and A a B

A B



4.4 Proofs hrvolving Sels 97

and D c C. To establish the inclusion C c D, we show that every element of C is also
an element of D;that is, if ;r e C then x € D. This is accornplished with a directproof,
by letting ¡ be an (arbitrary) element of C and showing that r must belong to D as well.
Recall that we need not be concerned if C contains no elements; for in this case r € C
is false for every element "r and so the implication "If ¡ € C, then x e D." is true for
all x e U. As a consequence of this observation, if C : Ø,then C contains no elements
and it follows that C c D.

Resuft 4.18 For every two'séts A and B ,

A-B:AaE
Proof Firstweshowthat A- B c A]'E.Letx e A- B.Thenx e Aand x 4 B. Sincex t'

B, it follows that.r € B. Therefore. s e Aanclx e B; sox € AnE.Hence A - B c
A ñB.

Nexrweshowrhat A¡E c A- B. Lety e AnE.Theny e Aandy € E.Since
y eE,wesee thaty (. B.Nowbecausey € Aandy f B,weconcludethaty e A - B.
Thus,An¿c A-8. I

PROOF,.\NALYSIS In the second paragraph of the proof of Result 4. I 8, we used y (rather than x) to denote
an arbitrary element of A o B. We ¿i¿ this only for variety. We could have used x twice.
Once we decided to use distinct symbols, y was the logical choice since x was used
in the first paragraph of the proof. This keeps our use of symbols consistent. Another
possibility would have been to use a in the first paragraph and b in the second. This has
some disadvantages, however. Since the sets are being called A and B, we might have a
tendency to think that a e A and b e B, which may confuse the reader. For this reason,
we chose x and y over a and b.

Before leaving the proof of Result 4.18, we have one other remark. At one point
in the second paragraph, we leamed that y € A and y f B. From this we could have
concluded (correctly) that y f A n B, but this is not what we wanted. Instead, we wrote
that y e A * B.It is always a good idea to keep our goal in sight. We wanted to show
thaty e A* B; soitwasirnportanttokeepinmindthatitwasthesetA - B inwhich
we were interested, not A l..ì -8. I

Next, let's consider the Venn diagrams for (A U B) - (Aa B) and (A - B) U

(B - A), which are shown in Figure 4.2. Frcm these two diagrams, we might

A B A
D

(A¿ B) (A) B) (A - B)u (B - A)

Figure 4.2 Venn diagrams for (A U B) - (A o ,B) and (A * B)U (B - A)
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conclude (correctly) that the two sets (A U B) - (A n B) and (A - B) U (B - A) are

equal. Indeed, all ihat is lacking is a proof that these two sets are equal. That is, Venn

diagram, can be useful in suggesting certain results concerning sets, but they are only

drawings and do not constitute a proof.

For every two sets A and B,

(AU B) - (A n B) : (A- B)u (B - A)'

First'we show that (AUB) - (An Ð c (A-B) U (B - A)' Letx e (AUB) -
(A n B). Then,r e A¿ B and x ( A1' B.Since x e At-) B, it follows that ¡ e A or

x €. B. Without loss of generality, let ¡ e A' Since x Ç AÀ B, the element x ç B'

Therefore, x e A -B andso x € (A- B) U (B - A)'Hence

(A u B) - (A n B) c (A - B)u (B - A)'

Nextweshowthat (A- B)U(B - A)c(AUB)-(AnB)' LeÍ'x e (A-B)U
(B - A).Then ¡ €. A - B oï x e B - A, say the former' So x e A and x I B' Thus

x e AUB andx É AnB.Consequently,x e(AUB)-(Anß)'Therefore'

(A - B)u (B - A) c (Au B) - (At\ B),

as desired.

PROOFANALYSIS In the proof of Result 4.19, when we wefe verifying the set inclusion

(A uB) - (A nB) c (A - B) u (B - A)'

we concluded that jr € A or x e B. At that point, we could have divided the proof into

two cases (Case |. ¡ e A and Case2. x e B); however, the proofs of the two cases

would be identical, except that A and B would be interchanged. Therefore, we decided

to consider only one of ihese. Since it really didn't mattef which case we handled, we

simply chose the case where x e A. This was accomplished by writing:

Without loss of generality, assume that x e A'

In the proof of the reverse set containment, we found ourselves in a similar situation,

namely, x € A-Borx e B - A.Again,thesetwosituationswerebasicallyidentical'

and we simply chose to work with the first (former) situation' (Had we decided to assulne

that x e B-- A, we would have considered the latter case') 0

'We now look at an example of a biconditional concerning sets'

Let A ancl B be sets.Then AU B : A if and only if B c A'

Firstwe provethatif A U B : A, then B ç A.Vy'e use aproof by contrapositive. Assume

that B is not a subset of A. Then there must be some element f € B such that x Ç 4.

Sincex e B,itfollowsthatr e AU B.However, sincex ( A'wehave A U B + A'

Nextweprovetheconverse,namely,ifBcA,thenAUB:A'Vy'euseadirect
proof here. Assume rhat B Ç4. To verify that A u B : A,we show ¡fiv¡ ! c Au B

ãndA u B c A.ThesetinclusionA c A U B isimmediate (if x e A'thenx e AU B)'

ItremainsonlytoshowthenthatAU B c A'Lety e AU B'Thus y e Aory € B'If

Result 4.20

Proof

Result 4.19

Proof
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y e A, then we already have the desired result. If y e B, then since B c A, it follows
that y e .4. Thus AU B c A. ¡

PROOFANALYSIS In the first paragraph of the proof of Result 4.20 we indicated that we were using a proof
by contrapositive, while in the second paragraph we mentioned that we were using a

direct proof. This really wasn't necessary as the assumptions we made would inform
the reader what technique we were applying. Also, in the proof of Result 4.20, we used
a proof by conJrapositive for one implication and a direct proof for its converse. This
wasn't necesdary either. Indeed, it is quite possible to interchange the techniques we used
(see Exercise 4.28). 0

4.5 Fundamental Properties of Set Operations

Many results concerning sets follow from some very fundamental properties of sets,

which, in turn, follow from coresponding results about logical statements that were
described in Chapter 2. For example, we know that if P and Q are two statements, then
P v Q and Qv P arc logically equivalent. Similarly, if A and B are two sets, then
AU B : BU A. We list some of the fundamental properties of set operations in the
following theorem. '

Theorem 4.21 For sets A, B, and C,

(l) Commutative Laws

(a) AUB:BUA
(Ð AnB:B1tA

(2) Associative Lqws

(a) Au (B u C): (A u B)u C
(b) Añ(B.C):(An B).C

(3) Distributive Laws

(a) Au (B.C) : (A U B).(Au C)
(b) A ñ(B u c) : (A n B) u (A nC)

(4) De Morgan's Laws

(a) AU B:Ã¡E
(b) AìB:Ã¿E

We present proofs of only three parts of Theorem  .2l,beginning with the commu-
tative law of the union of two sets.

Proof of
Theorem 4.21(1a)

WeshowthatA U B c B U A.Assumethatx e AU B.Thenx e Aorx e B.Applying
the commutative law for disjunction of statements, we conclude that r € B or x € A:
sor € B U^4.Thus, AU B c BU A. Theproof of thereversesetinclusion BU Ac
A U B is similar and is therefore omitted. r

Next we verify one of the distributive laws.
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Proof of
Theorem 4.21(3s)

Proof of
Theorem 4'21(4a)

PROOFANALYSIS

First we show that AU(BnC) c(AUB)n(AUC)' Let x e AU (BnC)' Then

r € A or x € B 
^C. 

If ¡ e ¿, íftÃ x € AUB and¡ e AUC' Thus ¡ € (AuB)n

(AUC),asdesired. Ontheotherhand,if ¡ e B OC'then x e B andx €C; andagain'

xeAUBandxeAUC.Soxe(AUB)n(AUC).Therefore,A)(BnC)c
(AUB)n(AuC).

Toverifythereversesetinclusion, let¡: e (A U B) n (A U C).Thenx e A U B and

x€AOC.IfxeA,thenxeAU(BoC)'sowemayassurnethatxlA.Thenthefact
thatxe'AUBand.rfAimpliesthatxeB.Bythesamereasonin ':.C.Therefore,'lZ 

nÁc,andsox e 'sv(n rc)' Thererot"' (¿ u B) n(A uc) ç AU (B nc)' r

As a final example, we prove one of De Morgan's laws'

First,weshowthatluB c ¿nE'Le¡'x t4uë Thenx ç A¿B-Y":\L+u"d
x é B.Therelbre, * e lun¿x €E,so'r e ãnB'Consequently' AU n C l!2:
" " i,;;i;""'i,"*in"t¡Àec AUE'Letx eãnB'rhenx e 4--*¿¡Si'rhus'
x Ç Aandx ç B'so x Ç Au B' Therefore'r € AoE' Hence Á n B c AU B' r

IntheproofoftheDeMorganlawthatwejustpresented,wearrivedatthestepxf
AU B arone point and theln next wrote x ( A ànd x ê B'Since x € A U B implies

thatxeAorxeB,youmighthaveexpectedustowritethatxÇ.AorxÇBalter
writing x f A U n; Aut this iould not be the co*ect conclusion' When we say that

x Ç. AOB, this is equivalent to writing -(x e A U B)' which is logically equivalent to

_((;r e A) or (¡ e B)). By the De Márgan law for rhe negation of the disjunction of

two statements (or two open sentences), we have that -((x e A) or (x e B)) is logically

equivalentto-(x e A)ånd -(x e B)t;thatis' x f Aandx ç B' 0

Proofs of some other parts of Theorem 4'21 are left as exercises'

RecallthattheCartesianproduct(orsimplytheproduct)AxBoftwosetsAand'B
is defined as.

A x B : {(a,b) : a e A andb e B}'

If A : Ø or B : Ø,then A x B : Ø'

Before looking at several examples of proofs concerning cartesian products of sets'

it is important to keep in mind that ån arbitrary element of the Cartesian product A x B

of twosets AandBis of theform(a'b)'where a e Aandb e B'

Result4.22 Let A,B,C, and D be sets'lf AçC and B Ç D'then Ax B cC x D'

Proof Let (;r, y) € Ax B' Thenx e A and y e B'Since A c C and B c D'itfollows that

¡ e C and Y € D'Hence('t, Y)eC x D' I

Result 4.23 For sets A, B, and C,

Ax(BUC):(AxB)U(AxC)'

Cartesian SetsofuctsdProIInvofsProo vrng4.6
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Proof WefirstshowthatA x (B UC) c (A x B) U (A x C).Let(-r, y) e A x(B UC).Then
x € A and y e B UC. Thus y € B or y € C,say theformer. Then (r, y) e e x B, and

so ("r, )) e (A x B) U (A x C). Consequently, A x (B UC) c (A x B)U (A x C).
Next we show that (A x B)U(A x C) c Ax (ð U C). Let (r,y) e (A x B)U

(AxC). Then(-r, y) e I x B or(x,y) e AxC, saytheformer.Then¡ e A andy e
B c BUC. Hence (r,y) e A x(BUC), implying that (A x B)U(A x C) c A x
(BuC). ¡

We give oúe additional example of a proof involving the Cartesian products of sets.

Result 4.24 For sets A, B , and C ,

Ax(B-C):(AxB)-(AxC)

Proof FirstweshowthatAx(B -C) c (A x B)-(A x C).Let(r, y) e I x (B -C).Then
x e Aandy e B - C.Sincey e B - C,itfollowsthaty e Bandy f C.Becawex e A
andy e B,wehave (x,y) e A x B. Sincey ( C,however,(x, y) ( AxC.Therefore,
(x,y) e (A x B) - (A x C).Hence A x (B -C) c (A x B) - (A x C).

We now show that (A x B) - (A x C) c A x (B - C). Let (x, y) e (A x B) -
(A x C). Then (-r, y) € A x B and (x,y) Ê A x C. Since (x, y) e A x B, it follows
that x e A and y e B. Also, since x e A and (x, y) # A x C, it follows that y ( C. So

y e B - C.Thus(x,y) e Ax(B -C)and(A x B) - (A x C)c A x (ß -C). r

PROOFANALYSIS We add ons comment concerning the preceding proof. During the proof of (A x B) -
(A x C) c A x (B - C),we needed to show that y f. C. We learned that (x, y) É A x
C. However, this information alone did not allow us to conclude that y ( C. Indeed, if
(x,y) É AxC,thenx f Aory f C.Sinceweknew,however,thatx e Aand(x,y) Ç

A x C, we were able to conclude that y f. C. t

EXERCISBS FOR CHAPTER 4

Section 4.1: Proofs Involving Divisibility of Integers

4.1. Let aandb beintegers, whereø 10. Prove thatif a lå,then a2 lb2.

4.2. Let a, b e Z, where a I 0 and b I 0. Prove that lf a I b and b I a, then a : b or a : -b.
4.3. Letm e Z.

(a) Giveadirectproof of thefollowing: If 3lm,then3lm2.
(b) State the contrapositive of the implication in (a).

(c) Give a direct proof of the following: If 3 [ m, then3 / m2.

(d) State the contrapositive of the implication in (c).

(e) State the conjunction of the implications in (a) and (c) using "if and only if".
4.4. Let x , y e Z. Prove that if 3 / x and 3 / y, then 3 I @2 - y2).

4.5. Let a, b, c e Z, where a f 0. Prove that 11 a / bc, then a I b and a I c.


