Solutions to Odd-Numbered
Section Exercises

EXERCISES FOR CHAPTER 1

Section 1.1: Describing a Set

1.1. Only (d) and (e) are sets.
13. @]Al=5 M |B =11, (©|C|=51, @|D|=2, (@|E|=1, ®O|F =2

15. @ A={-1,-2,-3,..})={xeZ: x<-1}

(b) B={-3,-2,..., 3}={xeZ: 3<x<3}={xeZ: |x|] <3}

@@ C={-2-1,1,2}={x€Z: 2<x<2,x#0}={xeZ: 0<|x| <2}
1.7. (@ A={--,—4,-1,2,5,8,---} ={3x+2: x€Z}

(b) B={--,-10,-5,0,5,10,---} ={5x: x € Z}

() C=(1,8,27,64,125,-. .} = {x*: x e N}

Section 1.2: Subsets

19. Letr =min(c —a,b—c)andlet ] = (c —r,c +r). Then I is centered at c and I C (a, b).
1.11. See Figure 1.
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Figure 1  Answer for Exercise 1.11

L13. P(A) = {#, {0}, {0}, A}
L15. P(A) = {2, (0}, {2}, {{2}}. {0, £}, (0, (0)), (0, {2}}, A}; [P(A)] =8
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| Section 1.3: Set Operations

1.17. @ AUB={1,3,59,13,15) MANB={9) (c)A-B={1,513}
@B-A={3,15) (A={3,7,11,15} (A NB={1,513)

1.19. LetA=1{1,2},B={1,3},and C = (2,3}. Then B# Cbhut B~ A=C — A= {3}.

1.21. (a) and (b) are the same, as are (c) and (d)

1.23. See Figures 2(a) and (b) below.
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Figure 2  Answers for Exercise 1.23

Section 1.4: Indexed Collections of Sets
1.25. LetU ={1,2,...,8},A={1,2,3,5}, B = {1,2,4,6},and C ={1,3,4,7}.

U

Answer for Exercise 1.25

Figure 3

1.27. Uy X =AUBUC = {0, 1,2,...,5 and Ny s X =ANBNC = {2}
1.29. Since |A| = 26 and |A,| = 3 for cach & € A, we need to have at least nine sets of cardinality 3 for their union to
be A; that is, in order for U%S A, = A, we must have | S| > 9. However, if we let § = {a.d, g, j,m, p,s,v,y}
then |, Aq = A. Hence the smallest cardinality of a set § with {5 Ax = A 15 9.
1.31. () {A,}sen, Where A, = {x e R: 0 <x < 1/n} = [0, I/n].
I (0) {A)wen, Where A, ={a € Z: |aj <n}={-n,—(—1,..., 01— 1), n}.



Section 1.5: Partitions of Sets

1.33.

1.35.
1.37.
1.39.

Section 1.6: Cartesian Products of Sets

141.
1.43.
145.

147.
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(a) S, is not a partition of A since 4 belongs to no element of ;.

(b) S, is a partition of A. S, can be written as {{1, 2}, {3, 4, 5}}.

(c) S; is not a partition of A because 2 belongs to two elements of S3.

(d) S, is not a partition of A since Sy is not a set of subsets of A.

A=1{1,2,3,4}.8 = {{1}, {2}, {3, 4}} and S; = {{1, 2}, {3}, {4}}.

Let S = {A, Ay, A3}, where Ay = {x €Q:x > 1}, A, ={x € Q:x < |}, and A3 = {1}.

Let S = {A,, A,, A3, Ay}, where Ay = {x € Z : x is odd and x is positive}, A; = {x € Z: x is odd and x is
negative, A; = {x € Z : x is even and x is nonnegative}, A4 = {x € Z : x is even and x is negative}.

Ax B ={(x,x),(x,y) (y,%), (v, ), (2, %), (z, )}

P(A) = {0, (a}, (b}, A}, A x P(A) = {(a, D), (a, {a}), (a, {b]), (a, A), (b, D), (b, {a}), (b, {b}), (b, A)}.
P(A) = {0, {1}, {2}, A}, P(B) = {9, B}, A x B ={(1,0), (2, D)},

P(A) x P(B) = {(8,9), (0, B), ({1}, ®), ({1}, B), ({2}, ©), ({2}, B), (A, D), (A, B)}.
§=1{(3,0),(2,1),(1,2),(0,3),(=3,0), (=2, 1); (=1,2), (2, =1), (1, =2), (0, =3), (2, = 1), (=1, =2)}.

- (0,3) |
(-1,2) (1,2) ‘
L -t [ ] |
(-2,1) (2,1) |
|
(_3,0) (3:0) '
i 1] 1 1 s |
(._2 _1) T . (23—1)
L-9 | -2
[ ] (0,_3)

Figure 4  Answer for Exercise 1.47

Section 2.1: Statements
2.1.

2.3.

2.5.
2.7.

(¢) Not a statement  (d) Not a statement (an open sentence)
(g) Not a statement

(a) A false statement
(e) Not a statement  (f) Not a statement (an open sentence)
(a) False. @ has no elements. (b) True (c) True
(d) False. {#} has @ as its only element.  (e) True
@xeZ: x>2) MxeZ: x <2}
3,5,11,17,41,59

(b) A true statement

(f) False. 1 is not a set.
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Section 2.2: The Negation of a Statement
2.9. See Figure 5.

P Q -~P -Q
T|T| F | F
T|F| F | T
Flr| 7 | F
F|lF| T | T

Figure 5  Answer for Exercise 2.9

Section 2.3: The Disjunction and Conjunction of Statements

2.11. (a) True, (b) False, (c)False, (d)True, (e) True.
2.13. (a) All nonempty subsets of {1, 3,5}.  (b) All subsets of (1, 3, 5}.
(¢) There are no subsets A of S for which (~P(A)) A (~Q(A)) is true.
Section 2.4: The Implication

2.15. See Figure 6.

P Q ~P P=2Q(P=Q)=>(P
T|T| F T F
T|F|F F T
FlT| T i) T
FlF| T T T

Figure 6  Answer for Exercise 2.15

217. (@ (PAQ)=>R: If +/2 is rational and =: is rational, then /3 is rational. (True)
b) (PAQ)=>(~R): If +/2 is rational and % is rational, then +/3 is not rational. (True)
(©) ((~P) A Q) = R :If +/2 is not rational and 2 is rational, then /3 is rational. (False)
(d) (P v Q) = (~R) : If /2 is rational or 2 is rational, then /3 is not rational. (True)

Section 2.5: More On Implications

2.19. (a) P(x) = Q(x):If|x| =4, thenx = 4. P(—4) = Q(—4) is false. P(=3)= Q(-3) is true. P(1) = Q(1)
is true. P(4) = Q(4)is true. P(5) = Q(5) is true.
(b) P(x) = Q(x):If x> = 16, then |x| = 4. True for all x € S.
(¢) P(x)= Q(x):Ifx > 3,thendx — 1 > 12. True forall x € S.
2.21. (a) True for (x, y) = (3, 4) and (x, y) = (5, 5), false for (x, y) = (1, —1).
() True for (x, y) = (1, 2) and (x, y) = (6, 6), false for (x, y) = (2, =2).
() True for (x, y) € {(1, —1), (=3, 4), (1, 0)} and false for (x, y) = (0, —1).

Section 2.6: The Biconditional

223, (a) ~P(x):x # —2. Trueifx =0, 2.
) P)V Ox):x = —2o0rx? =4 Trueifx = -2, 2. ‘
(©) P(X)AQ(x):x=—-2and x? =4 Trueif x = =2,
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(d) P(x) = Q(x):If x = —2, then x?> = 4. True for all x.
() Q(x) = P(x):Ifx?> = 4,then x = —2. True if x = 0, —2.
) P(x) & Q(x):x = =2 if and only if x?> = 4. True if x = 0, —2.
2.25. xis odd if and only if x2 is odd.
That x is odd is a necessary and sufficient condition for x? to be odd.
2.27. (a) True for (x, y) € {(3,4), (5,5)}.  (b) True for (x, y) € {(1,2),(6,6)}. (c) True for
(x, y) € {(1, =1), (1, 0)}.
2.29. () P(1) = Q@) isfalse; (ii) Q(4) = P(4) is true;
(iii) P(2) & R(2)istrue; (iv) O(3) & R(3) is false.

Section 2.7: Tautologies and Contradictions

2.31. The compound statement (P A (~ Q) A (P A Q) is a contradiction since it is false for all combinations of
truth values for the component statements P and Q. See the truth table below.

PlO]~0 | PAQ | PACO) | (PACONAPAQD)
T|T| F T F F
T|F| T F T F
F|T| F F F F
F|F| T F F F

2.33. The compound statement (P = Q) A (Q = R)) = (P = R) is a tautology since it is true for all
combinations of truth values for the component statements P, O, and R. See the truth table below.
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(P=>O)A(Q=>R)=(P= R):If Pimplies Q and Q implies R, then P implies R.
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Section 2.8: Logical Equivalence
2.35. (a) See the truth table below.

PlOQ |~ | ~Q | PVvQ | MPVO) | (“PIVI~0)
T T F F T F F
T F F T T F T
F T T F T F T
F F T T F T T

Since ~(P v Q) and (~P) V (~Q) do not have the same truth values for all combinations of truth values
for the component statements P and Q, the compound statements ~(P v Q) and (~P) Vv (~@Q) are not
logically equivalent.
(b) The biconditional ~(P v Q) < ((~P) Vv (~Q)) is not a tautology, and so there are instances when this
biconditional is false.
2.37. The statements Q and (~Q) = (P A (~P)) are logically equivalent since they have the same truth values for
all combinations of truth values for the component statements P and Q. See the truth table below.

PA(P) | (~Q)=(PA(~P))

327
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Section 2.9: Some Fundamental Properties of Logical Equivalence

2.39. (a) The statement P v (Q A R) is equivalent to (P v Q) A (P Vv R)since the last two columns in the truth
table of Figure 7 are the same.

P QR PVQ PVR QAR PV(QAR) (PVQ)A(PVR)
T|\T|T| T il iy T T
T|F|T| T Jia F T T
FlT|lT| T V% T i T
F|F|T| F T F F F
TI|T|F T T F T T
T|F|F| T T F an T
FITI|F| T F F F F
F|F|F| F F F F F

Figure 7  Answer for Exercise 2.39(a)

(b) The statement ~(P Vv Q) is equivalent to (~P) A (~Q) since the last two columns in the truth table of
Figure 8 are the same.

P Q ~P~-Q PVvQ ~(PVQ) (-P)N(-Q)
T|T |F | F T F F
T|\F|F | T T F F
Flrlr | F | T F F
Flr|T | T F T T

Figure 8  Answer for Exercise 2.39(b)

2.41. (a) x and y are even only if xy is even.
(b) If xy is even, then x and y are even.
(¢) Either at least one of x and y is odd or xy is even.
(d) x and y are even and xy is odd.

Section 2.10: Quantified Statements

2.43. Vx € S, P(x): Forevery odd integer x, the integer x* 4+ 1iseven.
Jx € S, Q(x) : There exists an odd integer x such that x%is even.
2.45. (a) There exists a set A such that AN A#0.
(b) For every set A, we have Ag A
2.47. (a) False, since P(1) is false. (b) True, for example, P(3) is true.
249. (a) da,becZ,ab <0anda+b > 0.
(b) Vx,y € R, x # y implies that x* 4y > 0.
(c) For all integers a and b either ab > Qora + b < 0.
There exist real numbers x and y such that x # y and x* + y? < 0. 1
(d) Ya,be Z,ab>0o0ra+b =<0
3x,y e R, x # yand x? + y2 < 0.
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2.51. Let S =(3,5,11}and P(s, t): st — 2 is prime.
(@) Vs, t €S, P(s,1).
(b) True since P(s, r)istrue forall s, € S.
(¢) 3s,t € §, ~P(s, ).
(d) There exist s, t € S such that st — 2 is not prime,
(e) False since the statement in (a) is true.

Section 2.11: Characterizations of Statements

2,53, Aninteger 1 is odd if and only if p? is odd.

2.55. (a) a characterization.  (b) a characterization.  (c¢) a characterization.
(d) a characterization. (Pythagorean theorem)  (e) not a characterization. (Every positive number is the area of
some rectangle.)

EXERCISES FOR CHAPTER 3

Section 3.1: Trivial and Vacuous Proofs

3.1. Proof Sincex? —2x +2=(x — 124 1> 1,it follows that x> — 2x 4+ 2 # 0 for all x € R. Hence the

statement is true Lrivially. ] |
3.3. Proof Notethat =* =y 4 L Ifr > I,thenr + | > I; whileif 0 <7 < 1,then { > landsor + 1 > L.

Thus ’—'I-F--' < 1is false for all € Q" and so the statement is true vacuously. [ |
3.5. Proof Sincen>—2n4 1= —1)*> >0, itfollowsthatn®+ 1 > 2n and son + ﬁ > 2. Thus the statement is |

true vacuously. L]

Section 3.2: Direct Proofs
3.7. Proof Letx beaneven integer. Then x = 2a for some integer a. Thus

5x—3=52a)—3=10a —4+1=2(5a —2) + L.

Since 5a — 2 is an integer, 5x — 3 is odd. ]

3.9. Proof Letl —n?>0.Thenn =0.Thus3n —2=23-0—2= —2is an even integer. ]
3.11. Proof Assume that (n + 1)>(n + 2)*/4is even, where n € S. Then n = 2. For n = 2,

(n +2)*(n + 3)%/4 = 100, which is even. ]

Section 3.3: Proof by Contrapositive

3.13. First, we prove a lemma. Lemma Letn € Z. If 157 is even, then n is even.
(Use a proof by contrapositive to verify this lemma.) Then use this lemma to prove the result.
Proof of Result Assume that 151 is even. By the lemma, n is even and so n = 2a for some integer a. Hence

9n = 9Q2a) = 2(9a).

Since 9a is an integer, 9n is even. ]
[Note: This result could also be proved by assuming that [5# is even (and so 15n = 2a for some integer a) and
observing that 9n = 151 — 6n = 2a — 6n.]
3.15. Lemma Letx € Z.If7x + 4 is even, then x is even. (Use a proof by contrapositive to verify this lemma.)
Proof of Result Assume that 7x + 4 is even. Then by the lemma, x is even and so x = 2a for some integer a.
Hence
3x—11=3Qa)—11=6a—124+1=2Ba —6)+ 1.
Since 3a — 6 is an integer, 3x — 11 is odd. ]
3.17. The proof would begin by assuming that n%(n + [)*/4 is odd, where n € S. Then n = 2 and so
ni(n — 1)2/4 = 1is odd.
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20 ¢ 8. Thus 20,21, ...,2"" € §;. Since 2° + 2! + ... + 2/ =2/ — 1, it follows that if we let
S = (SU2h—{2°,2, ..., 2 0,

then ), Sen i =k + 1 = m, producing a contradiction. m

Section 6.4: The Strong Principle of Mathematical Induction

6.33. Conjecture A sequence {a,} is defined recursively by a; = 1, a, =2, and a,, = a,-; + 2a,_ for n > 3. Then
a, = 2" for every positive integer n.
Proof We proceed by the Strong Principle of Mathematical Induction. Since a; = 1, the conjecture is true for
n = 1. Assume that a; = 2/~'"for every integer i with 1 <i < k, where k € N, We show that a;,; = 2*. Since
ayy = a; =2 =21, it follows that g, = 2* for k = 1. Hence we may assume that & > 2. Thus

Ut = ag +2a,_ = 2571 42282 = 0k Lokl
=2.2k1 =2k,

The result then follows by the Strong Principle of Mathematical Induction. =
6.35. (a) The sequence {F,} is defined recursively by Fy =1, F, =1,and F, = F,_| + F,_, forn > 3.
(b) Proof We proceed by the Strong Principle of Mathematical Induction. Since Fy = lisodd and 3 f 1, it
follows that 2 | F; if and only if 3 | 1 and the statement is true for n = 1. Assume that 2 | F; if and only if
3 | i for every integer { with 1 <i < k and k € N. We show that 2 | Fy,, if and only if 3 | (k + 1). Since
F, = Fiy = 1 and 3 } 2, the statement is true for k = 1. Hence we may assume that k > 2. We now
consider three cases, according to whetherk + 1 =3¢,k + 1 =39 + 1,ork + 1 = 3q + 2 for some
integer q.
Case 1. k+1=3q. Thus 3 fkand 3 f (k — 1). By the inductive hypothesis, F, and Fy_, are odd. Since
Fiy1 = Fy + Fy-,, it follows that Fy, is even.
Case 2. k+1=3q + 1. Thus 3 | k and 3 } (k — 1). By the inductive hypothesis, F; is even and Fj_; is
odd. Since Fyy| = Fy + Fy_y, it follows that Fiy, is odd.
Case 3. k+1=3g +2.Thus3 f kand 3 | (k — 1). By the inductive hypothesis, Fj is odd and Fy_, is
even. Since Fy, | = F, + Fy_y, it follows that F, is odd.
By the Strong Principle of Mathematical Induction, 2 | F,, if and only if 3 | n for every positive
integer n. a
6.37. Proof We use the Strong Principle of Mathematical Induction. Since 12 = 3 - 4 47 - 0, the statement is true
when n = 12. Assume for an integer k > 12 that for every integer { with 12 < i < k, there exist nonnegative
integers @ and b such that i = 3a 4+ 7b. We show that there exist nonnegative integers x and y such that
k+1=3x+7y.Since13=3-2+7-1and 14 =3 -0+ 7 - 2, we may assume that k > 14. Since
k — 2 > 12, there exist nonnegative integers ¢ and d such that k — 2 = 3¢ + 7d. Hence k + 1 =3(c + 1) + 7d.
By the Strong Principle of Mathematical Induction, for each integer n > 12, there are nonnegative integers a
and b such that n = 3a + 7b. ]

EXERCISES FOR CHAPTER 7

e e — s _ Sl

Section 7.2: Revisiting Quantified Statements

7.1. (a) Let S be the set of all odd integers and let P(n) : 3n + L iseven. Yn € S, P(n).

(b) Proof Letn € S.Thenn =2k + 1 for some integer k. Thus3n + 1 =32k + 1)+ 1 =6k +4 =

2(3k + 2). Since 3k + 2 is an integer, 3n + 1 is even. @

7.3. (a) Let P(n):n""'iseven. Yn € N, P(n).

(b) Note that P(1) is false and so the statement in (a) is false.
7.5. (@) Let Pm,n):n <m <2n. Yn e N—{1},3Im € Z, P(m, n).

(b) Proof Letn > 2beanintegerandletm =n+ 1. Since n > 2, it follows thatn < n + 1 =
m<n+2<n+n=2n.
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1.7;

7.9.

7.11.

713.

7.185.

Solutions to Odd-Numbered Section Exercises

(a) Let P(m,n):(n —2)m —2) > 0. Vn € Z,3m € Z, P(m, n).

(b) IneZ,Vm e Z,~ P(n,n).

(¢) Letn =2. Then(n —2)(m —2)=0-(m —2)=0forallm € N.

(a) Let P(a, b, x): |bx| <aand Q(a, b): |b] <a. Ya e N,3b € Z,(Q(a, by A (¥x € R, P(a, b, x))).

(b) Proof Leta € Nandletb =0. Then |bx| =0 < a for every real number x. [ |
@) Let P(x, y,n): x> +y*>n. In€Z,Vx,y € R, P(x, y,n).

(b) Proof Letn = 0. Then for every two real numbers x and y, x? + y2 > 0 = n. m
(a) Let P(a,b,n).a < % <b. Ja,beZ,¥YneN, Pla,b,n).

(b) Proof leta=0andb =2 Thenforeveryn eN,a=0<1 <2=0b. m

(a) Let S be the set of qdd integers and P(a, b, ¢): abc isodd. VYa,b,c € S, P(a, b, ¢).
(b) Let a, b, and ¢ be odd integers. Thena = 2x + 1, b =2y + 1, and ¢ = 2z 4+ 1, where x, y, z € Z. Then
show that abc = (2x + 1)(2y + 1)(2z + 1) is odd.

Section 7.3: Testing Statements

7.17.

7.19.
7.21.

7.23.

7.25.

7.27.

7.29.

7.31.
7.33.
7.35.
7.37.
7.39.

7.41.

7.43.
7.45.
747.
7.49.
7.51.
7.53.
7.55.
7.57.

The statement is true.
Proof Since each of the following statements
P(1) = Q(1):If 7 is prime, then 5 is prime.
P(2) = Q(2):If 2 is prime, then 7 is prime.
P(3) = Q(3): If 28 is prime, then 9 is prime.
P{4) = Q(4) : If 8 is prime, then 11 is prime.
is true, Vn € S, P(n) = Q(n) is true. [ ]
This statement is false. Let x = 1. Then 4x +7 = 11 is odd and x = [ is odd. Thus x = 1 is a counterexample.
This statement is true.
Proof Let x be an even integer. Then x = 2n for some integer n. Observe that x = (2n 4 1) + (—1). Since n
is an integer, 2n + | is odd. Since —1 is odd as well, both 2n + 1 and —1 are odd. m
This statement is false, Let A = {1,2,3}and B = {2,3}. Then AU B ={1,2,3} and (AU B) — B = {1} # A.
Consequently, A = {1, 2, 3} and B = {2, 3} constitute a counterexample.
The statement is true.
Proof Consider the integer 35. Then 345 = 8 isevenand 3 -5 = 15 is odd. m
The statement is false. Let x =3 and y = —1. Then |x + y| = 3+ (—=1)| = |2| =2 and |x| + |y| =
3| +]— 1] =3+ 1 =4. Thus |x + y| # |x| + |y|. So x = 3 and y = —1 is a counterexample.
The statement is false. We show that there is no real number x such that x? < x < x>,
Suppose that there is a real number x such that x> < x < x*. Since x? > 0, it follows that x > 0. Dividing
x> <x <xbyx,wehave x < 1 < x% Thus 0 < x < 1 and x2 > 1, which is impossible. L]
The statement is true. For a = 0, any two real numbers b and ¢ # 0 satisfy the equality.
The statement is false. Note that x* + x>+ 1 > | > 0 for every x € R.
The statement is false. Neither of the expressions :—:-'—':3 or 7 is defined whenx = lorx = —1.
The statement is false. Let x = 6 and y = 4. Then z = 2.
The statement is true.
Proof Assumethat A— B =@ foreveryset B.Let B=0.Then A —B=A-0=A=10. B
The statement is true.
Proof Let A be anonemptyset. Let B=A.ThenA—B=B—-A=0.S0|A—B|=|B—-A|=0. [
The statement is false. Observe that 4 = 1 + 3.
The statement is true. Consider ¢ = 1 andd = 2b + 1.
The statement is true. For each even integer n,n = n + 0.
The statement is false. Consider A = {1}, B = {2},and C = D = {1, 2}.
The statement is true. Leta = v2 and b = 1.
The statement is true. Consider the set B = § — A.

The statement is false. Let A = {1} and B = {2}. Then {1, 2} € P(A U B) but {1, 2} ¢ P(A) U P(B).
The statement is false. Consider A = {1}, B = {1, 2}, and C = {1}. i
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7.59. The statement is true. Observe that at least two of a, b, and ¢ are of the same parity, say a and b are of the same
parity. Then a + b is even.

7.61. The statement is false. Considera =2 and ¢ = 1.

7.63. The statement is false. Consider n = 1.

7.65. The statement is true. Let x = 51 and y = 50. Then x? = (51)> = (50 + 1) = (50> +2- 50 + 1.

7.67. The statement is true.
Proof Let p be an odd prime. Then p = 2k + 1 for some k € N.Fora =k + 1 and b =k,
AP =k+1Y - =0(+2k+1)—k*=2k+1=p. n

EXERCISES FOR CHAPTER 8

Section 8.1: Relations

8.1. domR = {a,b}andran R = {s, t}.
8.3. Since A x A = {(0,0), (0, 1), (1,0), (1, D} and |A x A| = 4, the number of subsets of A x A and hence the
number of relations on A is 2* = 16. Four of these 16 relations are #J, A x A, {(0, 0)}, and {(0, 0), (0, 1), (1, 0)}.

Section 8.2: Properties of Relations

8.5. The relation R is reflexive and transitive. Since (a, d) € R and (d, a) ¢ R, it follows that R is not symmetric.
8.7. The relation R is transitive but neither reflexive nor symmetric.
8.9. The relation R is reflexive and symmetric. Observe that 3 R 1 and 1 R O but 3 R 0. Thus R is not transitive.
8.11. The relation R is symmetric and transitive but not reflexive.
8.13. The relation R is reflexive and symmetric. Observe that —1 R 0 and O R 2 but —1 R 2. Thus R is not transitive.

Section 8.3: Equivalence Relations

8.15. Proof Since a® = @ for each a € Z, it follows that a R a and R is reflexive. Let a, b € Z such thata R b.
Then a® = b and so b> = ¢>. Thus b R a and R is symmetric. Leta, b, ¢ € Z such thata R b and b R c. Thus
a® = b® and b® = ¢3. Hence @® = ¢ and so a R ¢ and R is transitive. m
Leta, b € Z. Note that ® = b? if and only if a = b. Thus [a] = {a} for every a € Z.
8.17. There are three distinct equivalence classes, namely [1] = {1, 5}, [2] = {2, 3, 6}, and [4] = {4]}.
8.19. Proof Assumethata Rb,c Rd,anda Rd.Sincea R b and R is symmetric, b R a. Similarly, d R c. Because
b Ra,a Rd,and R is transitive, b R d. Finally, since b R d and d R c, it follows that b R ¢, as desired. =

Section 8.4: Properties of Equivalence Classes

8.21. Let R = {(v,v), w,w), (x, x), (3, ), (z, 2), (v, w), (W, v), (x, y), (¥, x)}. Then [v] = {v, w}, [x] = {x, ¥}, and
[z] = {z} are three distinct equivalence classes.
8.23. Observethat2 R 6and 6 R 3, but 2 R 3. Thus R is not transitive, and so R is not an equivalence relation.
8.25. Proof Letx € Z.Since 3x — 7x = —4x = 2(—2x) and —2x is an integer, 3x — 7x is even. Thus x R x and R
is reflexive.
Next, we show that R is symmetric. Let x R y, where x, y € Z. Thus 3x — 7y iseven and so 3x — 7y = 2a
for some integer a. Observe that

3y —7x = (3x — 7y) — 10x + 10y = 2a — 10x + 10y = 2(a — 5x + 5y).

Since @ — 5x + 5y is an integer, 3y — 7x is even. So y R x and R is symmetric.
Finally, we show that R is transitive. Assume that x R y and y R z, where x, y, z € Z. Then 3x — 7y and
3y — 7z are even. So 3x — 7y = 2a and 3y — 7z = 2b, where a, b € Z. Adding these two equations, we obtain

Bx—T7y)+@By—Tz)=3x—4y—Te=2a+2b

and so 3x — 7z =2a + 2b + 4y = 2(a + b + 2y). Since a + b + 2y is an integer, 3x — 7z is even. Therefore,
x R z and R is transitive. ]
There are two distinct equivalence classes, namely, [0] = {0, £2, £4, .. .} and [1] = {£1, £3, 5, ...}.




