Solutions to Odd-Numbered Section Exercises

EXERCISES FOR CHAPTER 1

Section 1.1: Describing a Set

- 1.1. Only (d) and (e) are sets.
- **1.3.** (a) |A| = 5, (b) |B| = 11, (c) |C| = 51, (d) |D| = 2, (e) |E| = 1, (f) |F| = 2
- **1.5.** (a) $A = \{-1, -2, -3, \ldots\} = \{x \in \mathbb{Z} : x \le -1\}$
 - **(b)** $B = \{-3, -2, \dots, 3\} = \{x \in \mathbb{Z} : -3 \le x \le 3\} = \{x \in \mathbb{Z} : |x| \le 3\}$
 - (c) $C = \{-2, -1, 1, 2\} = \{x \in \mathbb{Z} : -2 \le x \le 2, x \ne 0\} = \{x \in \mathbb{Z} : 0 < |x| \le 2\}$
- **1.7.** (a) $A = \{\cdots, -4, -1, 2, 5, 8, \cdots\} = \{3x + 2 : x \in \mathbb{Z}\}$
 - **(b)** $B = \{\cdots, -10, -5, 0, 5, 10, \cdots\} = \{5x : x \in \mathbb{Z}\}$
 - (c) $C = \{1, 8, 27, 64, 125, \dots\} = \{x^3 : x \in \mathbb{N}\}\$

Section 1.2: Subsets

- **1.9.** Let $r = \min(c a, b c)$ and let I = (c r, c + r). Then I is centered at c and $I \subseteq (a, b)$.
- **1.11.** See Figure 1.

Figure 1 Answer for Exercise 1.11

- **1.13.** $\mathcal{P}(A) = \{\emptyset, \{0\}, \{\{0\}\}, A\}$
- **1.15.** $\mathcal{P}(A) = \{\emptyset, \{0\}, \{\emptyset\}, \{\{\emptyset\}\}, \{0, \emptyset\}, \{0, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}, A\}; |\mathcal{P}(A)| = 8\}$

Section 1.3: Set Operations

- **1.17.** (a) $A \cup B = \{1, 3, 5, 9, 13, 15\}$ (b) $A \cap B = \{9\}$ (c) $A B = \{1, 5, 13\}$ (d) $B A = \{3, 15\}$ (e) $\overline{A} = \{3, 7, 11, 15\}$ (f) $A \cap \overline{B} = \{1, 5, 13\}$
- **1.19.** Let $A = \{1, 2\}$, $B = \{1, 3\}$, and $C = \{2, 3\}$. Then $B \neq C$ but $B A = C A = \{3\}$.
- **1.21.** (a) and (b) are the same, as are (c) and (d)
- 1.23. See Figures 2(a) and (b) below.

Figure 2 Answers for Exercise 1.23

Section 1.4: Indexed Collections of Sets

1.25. Let $U = \{1, 2, ..., 8\}$, $A = \{1, 2, 3, 5\}$, $B = \{1, 2, 4, 6\}$, and $C = \{1, 3, 4, 7\}$,

Figure 3 Answer for Exercise 1.25

- **1.27.** $\bigcup_{X \in S} X = A \cup B \cup C = \{0, 1, 2, ..., 5\} \text{ and } \bigcap_{X \in S} X = A \cap B \cap C = \{2\}.$
- **1.29.** Since |A| = 26 and $|A_{\alpha}| = 3$ for each $\alpha \in A$, we need to have at least nine sets of cardinality 3 for their union to be A; that is, in order for $\bigcup_{\alpha \in S} A_{\alpha} = A$, we must have $|S| \ge 9$. However, if we let $S = \{a, d, g, j, m, p, s, v, y\}$, then $\bigcup_{\alpha \in S} A_{\alpha} = A$. Hence the smallest cardinality of a set S with $\bigcup_{\alpha \in S} A_{\alpha} = A$ is 9.
- **1.31.** (a) $\{A_n\}_{n\in\mathbb{N}}$, where $A_n = \{x \in \mathbb{R} : 0 \le x \le 1/n\} = [0, 1/n]$.
 - **(b)** $\{A_n\}_{n\in\mathbb{N}}$, where $A_n = \{a \in \mathbb{Z} : |a| \le n\} = \{-n, -(n-1), \dots, (n-1), n\}$.

Section 1.5: Partitions of Sets

- **1.33.** (a) S_1 is not a partition of A since 4 belongs to no element of S_1 .
 - **(b)** S_2 is a partition of A. S_2 can be written as $\{\{1, 2\}, \{3, 4, 5\}\}.$
 - (c) S_3 is not a partition of A because 2 belongs to two elements of S_3 .
 - (d) S_4 is not a partition of A since S_4 is not a set of subsets of A.
- **1.35.** $A = \{1, 2, 3, 4\}$. $S_1 = \{\{1\}, \{2\}, \{3, 4\}\}$ and $S_2 = \{\{1, 2\}, \{3\}, \{4\}\}$.
- **1.37.** Let $S = \{A_1, A_2, A_3\}$, where $A_1 = \{x \in \mathbf{Q} : x > 1\}$, $A_2 = \{x \in \mathbf{Q} : x < 1\}$, and $A_3 = \{1\}$.
- **1.39.** Let $S = \{A_1, A_2, A_3, A_4\}$, where $A_1 = \{x \in \mathbb{Z} : x \text{ is odd and } x \text{ is positive}\}$, $A_2 = \{x \in \mathbb{Z} : x \text{ is odd and } x \text{ is negative}\}$, $A_3 = \{x \in \mathbb{Z} : x \text{ is even and } x \text{ is nonnegative}\}$, $A_4 = \{x \in \mathbb{Z} : x \text{ is even and } x \text{ is negative}\}$.

Section 1.6: Cartesian Products of Sets

- **1.41.** $A \times B = \{(x, x), (x, y), (y, x), (y, y), (z, x), (z, y)\}.$
- **1.43.** $\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, A\}, A \times \mathcal{P}(A) = \{(a, \emptyset), (a, \{a\}), (a, \{b\}), (a, A), (b, \emptyset), (b, \{a\}), (b, \{b\}), (b, A)\}.$
- **1.45.** $\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, A\}, \mathcal{P}(B) = \{\emptyset, B\}, A \times B = \{(1, \emptyset), (2, \emptyset)\},$
 - $\mathcal{P}(A) \times \mathcal{P}(B) = \{ (\emptyset, \emptyset), (\emptyset, B), (\{1\}, \emptyset), (\{1\}, B), (\{2\}, \emptyset), (\{2\}, B), (A, \emptyset), (A, B) \}.$
- **1.47.** $S = \{(3,0), (2,1), (1,2), (0,3), (-3,0), (-2,1), (-1,2), (2,-1), (1,-2), (0,-3), (-2,-1), (-1,-2)\}.$

Figure 4 Answer for Exercise 1.47

EXERCISES FOR CHAPTER 2

Section 2.1: Statements

- 2.1. (a) A false statement (b) A true statement (c) Not a statement (d) Not a statement (an open sentence)
- (e) Not a statement (f) Not a statement (an open sentence) (g) Not a statement 2.3. (a) False. Ø has no elements. (b) True (c) True
 - (d) False. $\{\emptyset\}$ has \emptyset as its only element. (e) True (f) False. 1 is not a set.
- **2.5.** (a) $\{x \in \mathbb{Z} : x > 2\}$ (b) $\{x \in \mathbb{Z} : x \le 2\}$
- **2.7.** 3, 5, 11, 17, 41, 59

Section 2.2: The Negation of a Statement

2.9. See Figure 5.

P	Q	~P	$\sim Q$
T	T	F	F
T	\overline{F}	F	T
F	T	T	F
F	F	T	T

Figure 5 Answer for Exercise 2.9

Section 2.3: The Disjunction and Conjunction of Statements

2.11. (a) True, (b) False, (c) False, (d) True, (e) True.

2.13. (a) All nonempty subsets of {1, 3, 5}. (b) All subsets of {1, 3, 5}.

(c) There are no subsets A of S for which $(\sim P(A)) \land (\sim Q(A))$ is true.

Section 2.4: The Implication

2.15. See Figure 6.

	P	Q	~P	$P \Rightarrow Q$	$(P \Rightarrow Q) \Rightarrow (\sim P)$
I	T	T	\overline{F}	T	F
	T	F	F	F	T
	F	T	T	T	T
	\overline{F}	\overline{F}	T	T	T

Figure 6 Answer for Exercise 2.15

2.17. (a) $(P \wedge Q) \Rightarrow R$: If $\sqrt{2}$ is rational and $\frac{2}{3}$ is rational, then $\sqrt{3}$ is rational. (True)

(b) $(P \wedge Q) \Rightarrow (\sim R)$: If $\sqrt{2}$ is rational and $\frac{2}{3}$ is rational, then $\sqrt{3}$ is not rational. (True)

(c) $((\sim P) \land Q) \Rightarrow R$: If $\sqrt{2}$ is not rational and $\frac{2}{3}$ is rational, then $\sqrt{3}$ is rational. (False)

(d) $(P \vee Q) \Rightarrow (\sim R)$: If $\sqrt{2}$ is rational or $\frac{2}{3}$ is rational, then $\sqrt{3}$ is not rational. (True)

Section 2.5: More On Implications

2.19. (a) $P(x) \Rightarrow Q(x)$: If |x| = 4, then x = 4. $P(-4) \Rightarrow Q(-4)$ is false. $P(-3) \Rightarrow Q(-3)$ is true. $P(1) \Rightarrow Q(1)$ is true. $P(4) \Rightarrow Q(4)$ is true. $P(5) \Rightarrow Q(5)$ is true.

(b) $P(x) \Rightarrow Q(x)$: If $x^2 = 16$, then |x| = 4. True for all $x \in S$.

(c) $P(x) \Rightarrow Q(x)$: If x > 3, then 4x - 1 > 12. True for all $x \in S$.

2.21. (a) True for (x, y) = (3, 4) and (x, y) = (5, 5), false for (x, y) = (1, -1).

(b) True for (x, y) = (1, 2) and (x, y) = (6, 6), false for (x, y) = (2, -2).

(c) True for $(x, y) \in \{(1, -1), (-3, 4), (1, 0)\}$ and false for (x, y) = (0, -1).

Section 2.6: The Biconditional

2.23. (a) $\sim P(x)$: $x \neq -2$. True if x = 0, 2.

(b) $P(x) \vee Q(x)$: x = -2 or $x^2 = 4$. True if x = -2, 2.

(c) $P(x) \wedge Q(x) : x = -2$ and $x^2 = 4$. True if x = -2.

- (d) $P(x) \Rightarrow Q(x)$: If x = -2, then $x^2 = 4$. True for all x.
- (e) $Q(x) \Rightarrow P(x)$: If $x^2 = 4$, then x = -2. True if x = 0, -2.
- (f) $P(x) \Leftrightarrow Q(x): x = -2$ if and only if $x^2 = 4$. True if x = 0, -2.
- **2.25.** x is odd if and only if x^2 is odd.

That x is odd is a necessary and sufficient condition for x^2 to be odd.

- **2.27.** (a) True for $(x, y) \in \{(3, 4), (5, 5)\}$. (b) True for $(x, y) \in \{(1, 2), (6, 6)\}$. (c) True for $(x, y) \in \{(1, -1), (1, 0)\}.$
- **2.29.** (i) $P(1) \Rightarrow Q(1)$ is false;
 - (ii) $Q(4) \Rightarrow P(4)$ is true;
 - (iii) $P(2) \Leftrightarrow R(2)$ is true; (iv) $Q(3) \Leftrightarrow R(3)$ is false.

Section 2.7: Tautologies and Contradictions

2.31. The compound statement $(P \land (\sim Q)) \land (P \land Q)$ is a contradiction since it is false for all combinations of truth values for the component statements P and Q. See the truth table below.

ij	P	Q	$\sim Q$	$P \wedge Q$	$P \wedge (\sim Q)$	$(P \wedge (\sim Q)) \wedge (P \wedge Q)$
J	T	T	F	T	F	F
П	T	F	Т	F	T	F
	F	Т	F	F	F	F
П	F	F	Т	F	F	F

2.33. The compound statement $((P \Rightarrow Q) \land (Q \Rightarrow R)) \Rightarrow (P \Rightarrow R)$ is a tautology since it is true for all combinations of truth values for the component statements P, Q, and R. See the truth table below.

P	Q	R	$P \Rightarrow Q$	$Q \Rightarrow R$	$(P \Rightarrow Q) \land (Q \Rightarrow R)$	$P \Rightarrow R$	$((P \Rightarrow Q) \land (Q \Rightarrow R)) \Rightarrow (P \Rightarrow R)$
T	T	T	T	T	T	T	T
T	F	Т	F	Т	F	Т	T
F	T	Т	Т	Т	Т	Т	T
F	F	T	Т	Т	Т	Т	T
Т	T	F	Т	F	F	F	T
Т	F	F	F	Т	F	F	T
F	T	F	Т	F	F	T	T
F	F	F	T	T	T	T	Т

$((P \Rightarrow Q) \land (Q \Rightarrow R)) \Rightarrow (P \Rightarrow R)$: If P implies Q and Q implies R, then P implies R.

Section 2.8: Logical Equivalence

2.35. (a) See the truth table below.

P	0	$\sim P$	~0	PVO	$\sim (P \vee Q)$	(~P) ∨ (~O)
77*	T	F	F	T	F	F
Ť	F	F	т	т	F	Î
F	T	T	F	T	F	Î
F	F	т	Т	F	Т	Т

Since $\sim (P \vee Q)$ and $(\sim P) \vee (\sim Q)$ do not have the same truth values for all combinations of truth values for the component statements P and Q, the compound statements $\sim (P \vee Q)$ and $(\sim P) \vee (\sim Q)$ are not logically equivalent.

- (b) The biconditional $\sim (P \vee Q) \Leftrightarrow ((\sim P) \vee (\sim Q))$ is not a tautology, and so there are instances when this biconditional is false.
- **2.37.** The statements Q and $(\sim Q) \Rightarrow (P \land (\sim P))$ are logically equivalent since they have the same truth values for all combinations of truth values for the component statements P and Q. See the truth table below.

P	0	$\sim P$	~Q	$P \wedge (\sim P)$	$(\sim Q) \Rightarrow (P \land (\sim P))$
T	T	F	F	F	T
T	F	F	T	F	F
F	T	T	F	F	T
F	16	т	т	l E	F

Section 2.9: Some Fundamental Properties of Logical Equivalence

2.39. (a) The statement $P \vee (Q \wedge R)$ is equivalent to $(P \vee Q) \wedge (P \vee R)$ since the last two columns in the truth table of Figure 7 are the same.

P	Q	R	$P \vee Q$	$P \vee R$	$Q \wedge R$	$P \vee (Q \wedge R)$	$(P \vee Q) \wedge (P \vee R)$
T	T	T	T	T	T	T	T
T	F	T	Ť	T	F	${f T}$	${f T}$
F	T	T	T	T	T	Т	T
F	F	T	F	T	\overline{F}	F	F
T	T	F	T	T	F -	Т	${f T}$
T	F	\overline{F}	T	T	F	Т	Т
\overline{F}	T	F	T	F	F	\mathbf{F}	F
F	F	F	F	F	F	F	\mathbf{F}

Figure 7 Answer for Exercise 2.39(a)

(b) The statement $\sim (P \vee Q)$ is equivalent to $(\sim P) \wedge (\sim Q)$ since the last two columns in the truth table of Figure 8 are the same.

P	Q	~P	$\sim Q$	$P \vee Q$	$\sim (P \vee Q)$	$(\sim P) \wedge (\sim Q)$
T	T	F	F	T	F	\mathbf{F}
T	F	F	T	T	F	F
F	T	T	F	T	F	F
\overline{F}	F	T	T	F	Т	Т

Figure 8 Answer for Exercise 2.39(b)

- **2.41.** (a) x and y are even only if xy is even.
 - (b) If xy is even, then x and y are even.
 - (c) Either at least one of x and y is odd or xy is even.
 - (d) x and y are even and xy is odd.

Section 2.10: Quantified Statements

- **2.43.** $\forall x \in S, P(x)$: For every odd integer x, the integer $x^2 + 1$ is even. $\exists x \in S, Q(x)$: There exists an odd integer x such that x^2 is even.
- **2.45.** (a) There exists a set A such that $A \cap \overline{A} \neq \emptyset$.
 - **(b)** For every set A, we have $\overline{A} \not\subseteq A$.
- **2.47.** (a) False, since P(1) is false. (b) True, for example, P(3) is true.
- **2.49.** (a) $\exists a, b \in \mathbb{Z}, ab < 0 \text{ and } a + b > 0.$
 - (b) $\forall x, y \in \mathbf{R}, x \neq y$ implies that $x^2 + y^2 > 0$.
 - (c) For all integers a and b either $ab \ge 0$ or $a + b \le 0$. There exist real numbers x and y such that $x \ne y$ and $x^2 + y^2 \le 0$.
 - (d) $\forall a, b \in \mathbf{Z}, ab \ge 0 \text{ or } a + b \le 0.$ $\exists x, y \in \mathbf{R}, x \ne y \text{ and } x^2 + y^2 \le 0.$

- **2.51.** Let $S = \{3, 5, 11\}$ and P(s, t) : st 2 is prime.
 - (a) $\forall s, t \in S, P(s, t)$.
 - **(b)** True since P(s, t) is true for all $s, t \in S$.
 - (c) $\exists s, t \in S, \sim P(s, t)$.
 - (d) There exist $s, t \in S$ such that st 2 is not prime,
 - (e) False since the statement in (a) is true.

Section 2.11: Characterizations of Statements

- **2.53.** An integer n is odd if and only if n^2 is odd.
- **2.55.** (a) a characterization. (b) a characterization. (c) a characterization.
 - (d) a characterization. (Pythagorean theorem) (e) not a characterization. (Every positive number is the area of some rectangle.)

EXERCISES FOR CHAPTER 3

Section 3.1: Trivial and Vacuous Proofs

- **3.1.** *Proof* Since $x^2 2x + 2 = (x 1)^2 + 1 \ge 1$, it follows that $x^2 2x + 2 \ne 0$ for all $x \in \mathbb{R}$. Hence the statement is true trivially.
- 3.3. **Proof** Note that $\frac{r^2+1}{r} = r + \frac{1}{r}$. If $r \ge 1$, then $r + \frac{1}{r} > 1$; while if 0 < r < 1, then $\frac{1}{r} > 1$ and so $r + \frac{1}{r} > 1$. Thus $\frac{r^2+1}{r} \le 1$ is false for all $r \in \mathbb{Q}^+$ and so the statement is true vacuously.
- **3.5.** Proof Since $n^2 2n + 1 = (n-1)^2 \ge 0$, it follows that $n^2 + 1 \ge 2n$ and so $n + \frac{1}{n} \ge 2$. Thus the statement is true vacuously.

Section 3.2: Direct Proofs

3.7. *Proof* Let x be an even integer. Then x = 2a for some integer a. Thus

$$5x - 3 = 5(2a) - 3 = 10a - 4 + 1 = 2(5a - 2) + 1$$

Since 5a - 2 is an integer, 5x - 3 is odd.

- **3.9. Proof** Let $1 n^2 > 0$. Then n = 0. Thus $3n 2 = 3 \cdot 0 2 = -2$ is an even integer.
- **3.11.** *Proof* Assume that $(n+1)^2(n+2)^2/4$ is even, where $n \in S$. Then n=2. For n=2, $(n+2)^2(n+3)^2/4=100$, which is even.

Section 3.3: Proof by Contrapositive

3.13. First, we prove a lemma. Lemma Let $n \in \mathbb{Z}$. If 15n is even, then n is even.

(Use a proof by contrapositive to verify this lemma.) Then use this lemma to prove the result.

Proof of Result Assume that 15n is even. By the lemma, n is even and so n = 2a for some integer a. Hence

$$9n = 9(2a) = 2(9a)$$
.

Since 9a is an integer, 9n is even.

[Note: This result could also be proved by assuming that 15n is even (and so 15n = 2a for some integer a) and observing that 9n = 15n - 6n = 2a - 6n.]

3.15. Lemma Let $x \in \mathbb{Z}$. If 7x + 4 is even, then x is even. (Use a proof by contrapositive to verify this lemma.) **Proof of Result** Assume that 7x + 4 is even. Then by the lemma, x is even and so x = 2a for some integer a. Hence

$$3x - 11 = 3(2a) - 11 = 6a - 12 + 1 = 2(3a - 6) + 1.$$

Since 3a - 6 is an integer, 3x - 11 is odd.

3.17. The proof would begin by assuming that $n^2(n+1)^2/4$ is odd, where $n \in S$. Then n=2 and so $n^2(n-1)^2/4=1$ is odd.

 $2^{t} \notin S_{k}$. Thus $2^{0}, 2^{1}, \dots, 2^{t-1} \in S_{k}$. Since $2^{0} + 2^{1} + \dots + 2^{t-1} = 2^{t} - 1$, it follows that if we let $S_{k+1} = (S_k \cup \{2^t\}) - \{2^0, 2^1, \dots, 2^{t-1}\},\$

then $\sum_{i \in S_{k+1}} i = k+1 = m$, producing a contradiction.

Section 6.4: The Strong Principle of Mathematical Induction

6.33. Conjecture A sequence $\{a_n\}$ is defined recursively by $a_1 = 1$, $a_2 = 2$, and $a_n = a_{n-1} + 2a_{n-2}$ for $n \ge 3$. Then $a_n = 2^{n-1}$ for every positive integer n.

Proof We proceed by the Strong Principle of Mathematical Induction. Since $a_1 = 1$, the conjecture is true for n=1. Assume that $a_i=2^{i-1}$ for every integer i with $1 \le i \le k$, where $k \in \mathbb{N}$. We show that $a_{k+1}=2^k$. Since $a_{1+1}=a_2=2=2^1$, it follows that $a_{k+1}=2^k$ for k=1. Hence we may assume that $k\geq 2$. Thus

$$a_{k+1} = a_k + 2a_{k-1} = 2^{k-1} + 2 \cdot 2^{k-2} = 2^{k-1} + 2^{k-1}$$

= $2 \cdot 2^{k-1} = 2^k$.

The result then follows by the Strong Principle of Mathematical Induction.

- **6.35.** (a) The sequence $\{F_n\}$ is defined recursively by $F_1=1$, $F_2=1$, and $F_n=F_{n-1}+F_{n-2}$ for $n\geq 3$.
 - (b) **Proof** We proceed by the Strong Principle of Mathematical Induction. Since $F_1 = 1$ is odd and $3 \nmid 1$, it follows that $2 \mid F_1$ if and only if $3 \mid 1$ and the statement is true for n = 1. Assume that $2 \mid F_i$ if and only if $3 \mid i$ for every integer i with $1 \le i \le k$ and $k \in \mathbb{N}$. We show that $2 \mid F_{k+1}$ if and only if $3 \mid (k+1)$. Since $F_2 = F_{1+1} = 1$ and 3 $\mbox{\em /} 2$, the statement is true for k = 1. Hence we may assume that $k \geq 2$. We now consider three cases, according to whether k + 1 = 3q, k + 1 = 3q + 1, or k + 1 = 3q + 2 for some integer q.

Case 1. k+1=3q. Thus 3 k and 3 k (k-1). By the inductive hypothesis, F_k and F_{k-1} are odd. Since $F_{k+1} = F_k + F_{k-1}$, it follows that F_{k+1} is even.

Case 2. k+1=3q+1. Thus $3 \mid k$ and $3 \not\mid (k-1)$. By the inductive hypothesis, F_k is even and F_{k-1} is odd. Since $F_{k+1} = F_k + F_{k-1}$, it follows that F_{k+1} is odd.

Case 3. k + 1 = 3q + 2. Thus 3 k and 3 keven. Since $F_{k+1} = F_k + F_{k-1}$, it follows that F_{k+1} is odd.

By the Strong Principle of Mathematical Induction, $2 \mid F_n$ if and only if $3 \mid n$ for every positive integer n.

6.37. *Proof* We use the Strong Principle of Mathematical Induction. Since $12 = 3 \cdot 4 + 7 \cdot 0$, the statement is true when n = 12. Assume for an integer $k \ge 12$ that for every integer i with $12 \le i \le k$, there exist nonnegative integers a and b such that i = 3a + 7b. We show that there exist nonnegative integers x and y such that k+1=3x+7y. Since $13=3\cdot 2+7\cdot 1$ and $14=3\cdot 0+7\cdot 2$, we may assume that $k\geq 14$. Since k-2>12, there exist nonnegative integers c and d such that k-2=3c+7d. Hence k+1=3(c+1)+7d. By the Strong Principle of Mathematical Induction, for each integer $n \ge 12$, there are nonnegative integers a and b such that n = 3a + 7b.

EXERCISES FOR CHAPTER 7

Section 7.2: Revisiting Quantified Statements

- **7.1.** (a) Let S be the set of all odd integers and let P(n): 3n+1 is even. $\forall n \in S, P(n)$.
 - **(b)** *Proof* Let $n \in S$. Then n = 2k + 1 for some integer k. Thus 3n + 1 = 3(2k + 1) + 1 = 6k + 4 = 12k + 12(3k+2). Since 3k+2 is an integer, 3n+1 is even.
- **7.3.** (a) Let $P(n): n^{n-1}$ is even. $\forall n \in \mathbb{N}, P(n)$.
 - (b) Note that P(1) is false and so the statement in (a) is false.
- **7.5.** (a) Let P(m, n) : n < m < 2n. $\forall n \in \mathbb{N} \{1\}, \exists m \in \mathbb{Z}, P(m, n)$.
 - (b) **Proof** Let $n \ge 2$ be an integer and let m = n + 1. Since $n \ge 2$, it follows that n < n + 1 = 1 $m < n + 2 \le n + n = 2n.$

- 7.7. (a) Let P(m, n): (n-2)(m-2) > 0. $\forall n \in \mathbb{Z}, \exists m \in \mathbb{Z}, P(m, n)$.
 - **(b)** $\exists n \in \mathbf{Z}, \forall m \in \mathbf{Z}, \sim P(m, n).$
 - (c) Let n = 2. Then $(n-2)(m-2) = 0 \cdot (m-2) = 0$ for all $m \in \mathbb{N}$.
- **7.9.** (a) Let P(a, b, x): |bx| < a and Q(a, b): |b| < a. $\forall a \in \mathbb{N}, \exists b \in \mathbb{Z}, (Q(a, b) \land (\forall x \in \mathbb{R}, P(a, b, x)))$.
 - **(b) Proof** Let $a \in \mathbb{N}$ and let b = 0. Then |bx| = 0 < a for every real number x.
- **7.11.** (a) Let P(x, y, n): $x^2 + y^2 \ge n$. $\exists n \in \mathbb{Z}, \forall x, y \in \mathbb{R}, P(x, y, n)$.
 - **(b) Proof** Let n = 0. Then for every two real numbers x and y, $x^2 + y^2 \ge 0 = n$.
- **7.13.** (a) Let P(a, b, n): $a < \frac{1}{n} < b$. $\exists a, b \in \mathbb{Z}, \forall n \in \mathbb{N}, P(a, b, n)$.
 - **(b) Proof** Let a = 0 and b = 2. Then for every $n \in \mathbb{N}$, $a = 0 < \frac{1}{n} < 2 = b$.
- **7.15.** (a) Let S be the set of odd integers and P(a, b, c): abc is odd. $\forall a, b, c \in S$, P(a, b, c).
 - (b) Let a, b, and c be odd integers. Then a = 2x + 1, b = 2y + 1, and c = 2z + 1, where $x, y, z \in \mathbb{Z}$. Then show that abc = (2x + 1)(2y + 1)(2z + 1) is odd.

Section 7.3: Testing Statements

7.17. The statement is true.

Proof Since each of the following statements

 $P(1) \Rightarrow Q(1)$: If 7 is prime, then 5 is prime.

 $P(2) \Rightarrow Q(2)$: If 2 is prime, then 7 is prime.

 $P(3) \Rightarrow Q(3)$: If 28 is prime, then 9 is prime.

 $P(4) \Rightarrow Q(4)$: If 8 is prime, then 11 is prime.

is true, $\forall n \in S$, $P(n) \Rightarrow Q(n)$ is true.

- **7.19.** This statement is false. Let x = 1. Then 4x + 7 = 11 is odd and x = 1 is odd. Thus x = 1 is a counterexample.
- 7.21. This statement is true.

Proof Let x be an even integer. Then x = 2n for some integer n. Observe that x = (2n + 1) + (-1). Since n is an integer, 2n + 1 is odd. Since -1 is odd as well, both 2n + 1 and -1 are odd.

- **7.23.** This statement is false. Let $A = \{1, 2, 3\}$ and $B = \{2, 3\}$. Then $A \cup B = \{1, 2, 3\}$ and $(A \cup B) B = \{1\} \neq A$. Consequently, $A = \{1, 2, 3\}$ and $B = \{2, 3\}$ constitute a counterexample.
- **7.25.** The statement is true.

Proof Consider the integer 35. Then 3 + 5 = 8 is even and $3 \cdot 5 = 15$ is odd.

- **7.27.** The statement is false. Let x = 3 and y = -1. Then |x + y| = |3 + (-1)| = |2| = 2 and |x| + |y| = |3| + |-1| = 3 + 1 = 4. Thus $|x + y| \ne |x| + |y|$. So x = 3 and y = -1 is a counterexample.
- **7.29.** The statement is false. We show that there is no real number x such that $x^2 < x < x^3$. Suppose that there is a real number x such that $x^2 < x < x^3$. Since $x^2 \ge 0$, it follows that x > 0. Dividing $x^2 < x < x^3$ by x, we have $x < 1 < x^2$. Thus 0 < x < 1 and $x^2 > 1$, which is impossible.
- **7.31.** The statement is true. For a = 0, any two real numbers b and $c \neq 0$ satisfy the equality.
- **7.33.** The statement is false. Note that $x^4 + x^2 + 1 \ge 1 > 0$ for every $x \in \mathbb{R}$.
- 7.35. The statement is false. Neither of the expressions $\frac{x^2+x}{x^2-1}$ or $\frac{x}{x^2-1}$ is defined when x=1 or x=-1.
- **7.37.** The statement is false. Let x = 6 and y = 4. Then z = 2.
- **7.39.** The statement is true.

Proof Assume that $A - B = \emptyset$ for every set B. Let $B = \emptyset$. Then $A - B = A - \emptyset = A = \emptyset$.

7.41. The statement is true.

Proof Let A be a nonempty set. Let B = A. Then $A - B = B - A = \emptyset$. So |A - B| = |B - A| = 0.

- **7.43.** The statement is false. Observe that 4 = 1 + 3.
- **7.45.** The statement is true. Consider c = 1 and d = 2b + 1.
- **7.47.** The statement is true. For each even integer n, n = n + 0.
- **7.49.** The statement is false. Consider $A = \{1\}$, $B = \{2\}$, and $C = D = \{1, 2\}$.
- **7.51.** The statement is true. Let $a = \sqrt{2}$ and b = 1.
- **7.53.** The statement is true. Consider the set B = S A.
- **7.55.** The statement is false. Let $A = \{1\}$ and $B = \{2\}$. Then $\{1, 2\} \in \mathcal{P}(A \cup B)$ but $\{1, 2\} \notin \mathcal{P}(A) \cup \mathcal{P}(B)$.
- **7.57.** The statement is false. Consider $A = \{1\}$, $B = \{1, 2\}$, and $C = \{1\}$.

- **7.59.** The statement is true. Observe that at least two of a, b, and c are of the same parity, say a and b are of the same parity. Then a + b is even.
- **7.61.** The statement is false. Consider a = 2 and c = 1.
- **7.63.** The statement is false. Consider n = 1.
- **7.65.** The statement is true. Let x = 51 and y = 50. Then $x^2 = (51)^2 = (50 + 1)^2 = (50)^2 + 2 \cdot 50 + 1$.
- **7.67.** The statement is true.

Proof Let p be an odd prime. Then p = 2k + 1 for some $k \in \mathbb{N}$. For a = k + 1 and b = k, $a^2 - b^2 = (k + 1)^2 - k^2 = (k^2 + 2k + 1) - k^2 = 2k + 1 = p$.

EXERCISES FOR CHAPTER 8

Section 8.1: Relations

- **8.1.** dom $R = \{a, b\}$ and ran $R = \{s, t\}$.
- **8.3.** Since $A \times A = \{(0, 0), (0, 1), (1, 0), (1, 1)\}$ and $|A \times A| = 4$, the number of subsets of $A \times A$ and hence the number of relations on A is $2^4 = 16$. Four of these 16 relations are \emptyset , $A \times A$, $\{(0, 0)\}$, and $\{(0, 0), (0, 1), (1, 0)\}$.

Section 8.2: Properties of Relations

- **8.5.** The relation R is reflexive and transitive. Since $(a, d) \in R$ and $(d, a) \notin R$, it follows that R is not symmetric.
- **8.7.** The relation R is transitive but neither reflexive nor symmetric.
- **8.9.** The relation R is reflexive and symmetric. Observe that 3 R 1 and 1 R 0 but 3 R 0. Thus R is not transitive.
- **8.11.** The relation R is symmetric and transitive but not reflexive.
- **8.13.** The relation R is reflexive and symmetric. Observe that -1 R 0 and 0 R 2 but -1 R 2. Thus R is not transitive.

Section 8.3: Equivalence Relations

- **8.15. Proof** Since $a^3 = a^3$ for each $a \in \mathbb{Z}$, it follows that a R a and R is reflexive. Let $a, b \in \mathbb{Z}$ such that a R b. Then $a^3 = b^3$ and so $b^3 = a^3$. Thus b R a and R is symmetric. Let $a, b, c \in \mathbb{Z}$ such that a R b and b R c. Thus $a^3 = b^3$ and $b^3 = c^3$. Hence $a^3 = c^3$ and so a R c and R is transitive.

 Let $a, b \in \mathbb{Z}$. Note that $a^3 = b^3$ if and only if a = b. Thus $[a] = \{a\}$ for every $a \in \mathbb{Z}$.
- **8.17.** There are three distinct equivalence classes, namely $[1] = \{1, 5\}, [2] = \{2, 3, 6\}, \text{ and } [4] = \{4\}.$
- **8.19.** Proof Assume that a R b, c R d, and a R d. Since a R b and R is symmetric, b R a. Similarly, d R c. Because b R a, a R d, and R is transitive, b R d. Finally, since b R d and d R c, it follows that b R c, as desired.

Section 8.4: Properties of Equivalence Classes

- **8.21.** Let $R = \{(v, v), (w, w), (x, x), (y, y), (z, z), (v, w), (w, v), (x, y), (y, x)\}$. Then $[v] = \{v, w\}, [x] = \{x, y\}$, and $[z] = \{z\}$ are three distinct equivalence classes.
- **8.23.** Observe that 2 R 6 and 6 R 3, but 2 R 3. Thus R is not transitive, and so R is not an equivalence relation.
- **8.25.** Proof Let $x \in \mathbb{Z}$. Since 3x 7x = -4x = 2(-2x) and -2x is an integer, 3x 7x is even. Thus x R x and R is reflexive.

Next, we show that R is symmetric. Let x R y, where $x, y \in \mathbb{Z}$. Thus 3x - 7y is even and so 3x - 7y = 2a for some integer a. Observe that

$$3y - 7x = (3x - 7y) - 10x + 10y = 2a - 10x + 10y = 2(a - 5x + 5y).$$

Since a - 5x + 5y is an integer, 3y - 7x is even. So y R x and R is symmetric.

Finally, we show that R is transitive. Assume that x R y and y R z, where x, y, z \in **Z**. Then 3x - 7y and 3y - 7z are even. So 3x - 7y = 2a and 3y - 7z = 2b, where $a, b \in$ **Z**. Adding these two equations, we obtain

$$(3x - 7y) + (3y - 7z) = 3x - 4y - 7z = 2a + 2b$$

and so 3x - 7z = 2a + 2b + 4y = 2(a + b + 2y). Since a + b + 2y is an integer, 3x - 7z is even. Therefore, x R z and R is transitive.

There are two distinct equivalence classes, namely, $[0] = \{0, \pm 2, \pm 4, \ldots\}$ and $[1] = \{\pm 1, \pm 3, \pm 5, \ldots\}$.