EXERCISES FOR CHAPTER 1

Section 1.1: Describing a Set

- 1.1. Which of the following are sets?
 - (a) 1, 2, 3
 - (b) $\{1, 2\}, 3$
 - (c) $\{\{1\}, 2\}, 3$
 - (d) $\{1, \{2\}, 3\}$
 - (e) $\{1, 2, a, b\}$
- 1.2. Let $S = \{-2, -1, 0, 1, 2, 3\}$. Describe each of the following sets as $\{x \in S : p(x)\}$, where p(x) is some condition on x.
 - (a) $A = \{1, 2, 3\}$
 - (b) $B = \{0, 1, 2, 3\}$
 - (c) $C = \{-2, -1\}.$
 - (d) $D = \{-2, 2, 3\}.$
- 1.3. Determine the cardinality of each of the following sets:
 - (a) $A = \{1, 2, 3, 4, 5\}$
 - (b) $B = \{0, 2, 4, \dots, 20\}$
 - (c) $C = \{25, 26, 27, \dots, 75\}$

- (d) $D = \{\{1, 2\}, \{1, 2, 3, 4\}\}$
- (e) $E = \{\emptyset\}$
- (f) $F = \{2, \{2, 3, 4\}\}$
- 1.4. Write each of the following sets by listing its elements within braces.
 - (a) $A = \{n \in \mathbb{Z} : -4 < n \le 4\}$
 - (b) $B = \{n \in \mathbb{Z} : n^2 < 5\}$
 - (c) $C = \{n \in \mathbb{N} : n^3 < 100\}$
 - (d) $D = \{x \in \mathbf{R} : x^2 x = 0\}$
 - (e) $E = \{x \in \mathbf{R} : x^2 + 1 = 0\}$
- 1.5. Write each of the following sets in the form $\{x \in \mathbf{Z} : p(x)\}$, where p(x) is a property concerning x.
 - (a) $A = \{-1, -2, -3, \ldots\}$
 - (b) $B = \{-3, -2, \dots, 3\}$
 - (c) $C = \{-2, -1, 1, 2\}$
- 1.6. The set $E = \{2x : x \in \mathbb{Z}\}$ can be described by listing its elements, namely $E = \{\dots, -4, -2, 0, 2, 4, \dots\}$. List the elements of the following sets in a similar manner.
 - (a) $A = \{2x + 1 : x \in \mathbb{Z}\}$
 - (b) $B = \{4n : n \in \mathbb{Z}\}$
 - (c) $C = \{3q + 1 : q \in \mathbb{Z}\}$
- 1.7. The set $E = \{\dots, -4, -2, 0, 2, 4, \dots\}$ of even integers can be described by means of a defining condition by $E = \{y = 2x : x \in \mathbb{Z}\} = \{2x : x \in \mathbb{Z}\}$. Describe the following sets in a similar manner.
 - (a) $A = \{\ldots, -4, -1, 2, 5, 8, \ldots\}$
 - (b) $B = \{\dots, -10, -5, 0, 5, 10, \dots\}$
 - (c) $C = \{1, 8, 27, 64, 125, \ldots\}$

Section 1.2: Subsets

- 1.8. Give examples of three sets A, B, and C such that
 - (a) $A \subseteq B \subset C$.
 - (b) $A \in B, B \in C$, and $A \notin C$.
 - (c) $A \in B$ and $A \subset C$.
- 1.9. Let (a, b) be an open interval of real numbers and let $c \in (a, b)$. Describe an open interval I centered at c such that $I \subseteq (a, b)$.
- 1.10. Which of the following sets are equal?
 - $A = \{n \in \mathbb{Z} : |n| < 2\}$ $D = \{n \in \mathbb{Z} : n^2 \le 1\}$
 - $B = \{n \in \mathbb{Z} : n^3 = n\}$ $E = \{-1, 0, 1\}$
 - $C = \{ n \in \mathbf{Z} : n^2 \le n \}$
- 1.11. For a universal set $U = \{1, 2, ..., 8\}$ and two sets $A = \{1, 3, 4, 7\}$ and $B = \{4, 5, 8\}$, draw a Venn diagram that represents these sets.
- 1.12. Find $\mathcal{P}(A)$ and $|\mathcal{P}(A)|$ for
 - (a) $A = \{1, 2\}.$
 - (b) $A = \{\emptyset, 1, \{a\}\}.$
- 1.13. Find $\mathcal{P}(A)$ for $A = \{0, \{0\}\}.$

- 1.14. Find $\mathcal{P}(\mathcal{P}(\{1\}))$ and its cardinality.
- 1.15. Find $\mathcal{P}(A)$ and $|\mathcal{P}(A)|$ for $A = \{0, \emptyset, \{\emptyset\}\}$.
- 1.16. Give an example of a set S such that
 - (a) $S \subseteq \mathcal{P}(\mathbf{N})$
 - (b) $S \in \mathcal{P}(\mathbf{N})$
 - (c) $S \subseteq \mathcal{P}(\mathbf{N})$ and |S| = 5.
 - (d) $S \in \mathcal{P}(\mathbf{N})$ and |S| = 5.

Section 1.3: Set Operations

- 1.17. Let $U = \{1, 3, ..., 15\}$ be the universal set, $A = \{1, 5, 9, 13\}$, and $B = \{3, 9, 15\}$. Determine the following: (a) $A \cup B$, (b) $A \cap B$, (c) A B, (d) B A, (e) \overline{A} , (f) $A \cap \overline{B}$.
- 1.18. Give examples of three sets A, B, and C such that
 - (a) $A \in B$, $A \subseteq C$, and $B \not\subseteq C$.
 - (b) $B \in A$, $B \subset C$, and $A \cap C \neq \emptyset$.
 - (c) $A \in B$, $B \subseteq C$, and $A \not\subseteq C$.
- 1.19. Give examples of three sets A, B, and C such that $B \neq C$ but B A = C A.
- 1.20. Give examples of two sets A and B such that $|A B| = |A \cap B| = |B A| = 3$. Draw the accompanying Venn diagram.
- 1.21. Let U be a universal set and let A and B be two subsets of U. Draw a Venn diagram for each of the following sets.
 - (a) $\overline{A \cup B}$ (b) $\overline{A} \cap \overline{B}$ (c) $\overline{A \cap B}$ (d) $\overline{A} \cup \overline{B}$

What can you say about parts (a) and (b)? parts (c) and (d)?

- 1.22. Give an example of a universal set U, two sets A and B, and an accompanying Venn diagram such that $|A \cap B| = |A B| = |B A| = |\overline{A \cup B}| = 2$.
- 1.23. Let A, B, and C be nonempty subsets of a universal set U. Draw a Venn diagram for each of the following set operations.
 - (a) $(C B) \cup A$
 - (b) $C \cap (A B)$
- 1.24. Let $A = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}\$.
 - (a) Determine which of the following are elements of $A: \emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}.$
 - (b) Determine |A|.
 - (c) Determine which of the following are subsets of $A: \emptyset, \{\emptyset\}, \{\emptyset\}, \{\emptyset\}\}$. For (d)–(i), determine the indicated sets.
 - (d) $\emptyset \cap A$
 - (e) $\{\emptyset\} \cap A$
 - (f) $\{\emptyset, \{\emptyset\}\} \cap A$
 - (g) $\emptyset \cup A$
 - (h) $\{\emptyset\} \cup A$
 - (i) $\{\emptyset, \{\emptyset\}\} \cup A$.

30

Section 1.4: Indexed Collections of Sets

- 1.25. Give examples of a universal set U and sets A, B, and C such that each of the following sets contains exactly one element: $A \cap B \cap C$, $(A \cap B) - C$, $(A \cap C) - B$, $(B \cap C) - A$, $A - (B \cup C)$, $B - (A \cup C)$, $C - (A \cup B)$, $\overline{A \cup B \cup C}$. Draw the accompanying Venn diagram.
- 1.26. For a real number r, define $A_r = \{r^2\}$, B_r as the closed interval [r-1, r+1], and C_r as the interval (r, ∞) . For $S = \{1, 2, 4\}$, determine
 - (a) $\bigcup_{\alpha \in S} A_{\alpha}$ and $\bigcap_{\alpha \in S} A_{\alpha}$
 - (b) $\bigcup_{\alpha \in S} B_{\alpha}$ and $\bigcap_{\alpha \in S} B_{\alpha}$
 - (c) $\bigcup_{\alpha \in S} C_{\alpha}$ and $\bigcap_{\alpha \in S} C_{\alpha}$.
- 1.27. Let $A = \{1, 2, 5\}, B = \{0, 2, 4\}, C = \{2, 3, 4\}, \text{ and } S = \{A, B, C\}.$ Determine $\bigcup_{X \in S} X$ and $\bigcap_{X \in S} X$.
- 1.28. For a real number r, define S_r to be the interval [r-1,r+2]. Let $A=\{1,3,4\}$. Determine $\bigcup_{\alpha\in A}S_\alpha$ and $\bigcap_{\alpha\in A} S_{\alpha}$.
- 1.29. Let $A = \{a, b, \ldots, z\}$ be the set consisting of the letters of the alphabet. For $\alpha \in A$, let A_{α} consist of α and the two letters that follow it, where $A_y = \{y, z, a\}$ and $A_z = \{z, a, b\}$. Find a set $S \subseteq A$ of smallest cardinality such that $\bigcup_{\alpha \in S} A_{\alpha} = A$. Explain why your set S has the required properties.
- 1.30. For each of the following collections of sets, define a set A_n for each $n \in \mathbb{N}$ such that the indexed collection $\{A_n\}_{n\in\mathbb{N}}$ is precisely the given collection of sets. Then find both the union and intersection of the indexed collection of sets.
 - (a) $\{[1, 2+1), [1, 2+1/2), [1, 2+1/3), \ldots\}$
 - (b) $\{(-1, 2), (-3/2, 4), (-5/3, 6), (-7/4, 8), \ldots\}$
- 1.31. For each of the following, find an indexed collection $\{A_n\}_{n\in\mathbb{N}}$ of distinct sets (that is, no two sets are equal) satisfying the given conditions.

 - (a) $\bigcap_{n=1}^{\infty} A_n = \{0\}$ and $\bigcup_{n=1}^{\infty} A_n = [0, 1]$. (b) $\bigcap_{n=1}^{\infty} A_n = \{-1, 0, 1\}$ and $\bigcup_{n=1}^{\infty} A_n = \mathbf{Z}$.

Section 1.5: Partitions of Sets

- 1.32. Which of the following are partitions of $A = \{a, b, c, d, e, f, g\}$? For each collection of subsets that is not a partition of A, explain your answer.
 - (a) $S_1 = \{\{a, c, e, g\}, \{b, f\}, \{d\}\}\$
 - (b) $S_2 = \{\{a, b, c, d\}, \{e, f\}\}$
 - (c) $S_3 = \{A\}$
 - (d) $S_4 = \{\{a\}, \emptyset, \{b, c, d\}, \{e, f, g\}\}$
 - (e) $S_5 = \{\{a, c, d\}, \{b, g\}, \{e\}, \{b, f\}\}$
- 1.33. Which of the following sets are partitions of $A = \{1, 2, 3, 4, 5\}$?
 - (a) $S_1 = \{\{1, 3\}, \{2, 5\}\}$
 - (b) $S_2 = \{\{1, 2\}, \{3, 4, 5\}, \{2, 1\}\}$
 - (c) $S_3 = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{4, 5\}\}$
 - (d) $S_4 = A$
- 1.34. Let $A = \{1, 2, 3, 4, 5, 6\}$. Give an example of a partition S of A such that |S| = 3.
- 1.35. Give an example of a set A with |A| = 4 and two disjoint partitions S_1 and S_2 of A with $|S_1| = 4$ $|S_2| = 3$.

- 1.36. Give an example of three sets A, S_1 , and S_2 such that S_1 is a partition of A, S_2 is a partition of S_1 , and $|S_2| < |S_1| < |A|$.
- 1.37. Give an example of a partition of **Q** into three subsets.
- 1.38. Give an example of a partition of N into three subsets.
- 1.39. Give an example of a partition of **Z** into four subsets.
- 1.40. Let $A = \{1, 2, ..., 12\}$. Give an example of a partition S of A satisfying the following requirements: (i) |S| = 5, (ii) T is a subset of S such that |T| = 4 and $|\bigcup_{X \in T} X| = 10$, and (iii) there is no element $B \in S$ such that |B| = 3.

Section 1.6: Cartesian Products of Sets

- 1.41. Let $A = \{x, y, z\}$ and $B = \{x, y\}$. Determine $A \times B$.
- 1.42. Let $A = \{1, \{1\}, \{\{1\}\}\}$. Determine $A \times A$.
- 1.43. For $A = \{a, b\}$. Determine $A \times \mathcal{P}(A)$.
- 1.44. For $A = \{\emptyset, \{\emptyset\}\}\$. Determine $A \times \mathcal{P}(A)$.
- 1.45. For $A = \{1, 2\}$ and $B = \{\emptyset\}$, determine $A \times B$ and $\mathcal{P}(A) \times \mathcal{P}(B)$.
- 1.46. Describe the graph of the circle whose equation is $x^2 + y^2 = 4$ as a subset of $\mathbf{R} \times \mathbf{R}$.
- 1.47. List the elements of the set $S = \{(x, y) \in \mathbf{Z} \times \mathbf{Z} : |x| + |y| = 3\}$. Plot the corresponding points in the Euclidean x y plane.

ADDITIONAL EXERCISES FOR CHAPTER 1

- 1.48. Let $S = \{-10, -9, \dots, 9, 10\}$. Describe each of the following sets as $\{x \in S : p(x)\}$, where p(x) is some condition on x.
 - (a) $A = \{-10, -9, \dots, -1, 1, \dots, 9, 10\}$
 - (b) $B = \{-10, -9, \dots, -1, 0\}$
 - (c) $C = \{-5, -4, \dots, 7\}$
 - (d) $D = \{-10, -9, \dots, 4, 6, 7, \dots, 10\}$
- 1.49. Describe each of the following sets by listing its elements within braces.
 - (a) $\{x \in \mathbf{Z} : x^3 4x = 0\}$
 - (b) $\{x \in \mathbf{R} : |x| = -1\}$
 - (c) $\{m \in \mathbb{N} : 2 < m \le 5\}$
 - (d) $\{n \in \mathbb{N} : 0 \le n \le 3\}$
 - (e) $\{k \in \mathbf{Q} : k^2 4 = 0\}$
 - (f) $\{k \in \mathbb{Z} : 9k^2 3 = 0\}$
 - (g) $\{k \in \mathbb{Z} : 1 \le k^2 \le 10\}$
- 1.50. Determine the cardinality of each of the following sets.
 - (a) $A = \{1, 2, 3, \{1, 2, 3\}, 4, \{4\}\}$
 - (b) $B = \{x \in \mathbf{R} : |x| = -1\}$
 - (c) $C = \{m \in \mathbb{N} : 2 < m \le 5\}$
 - (d) $D = \{n \in \mathbb{N} : n < 0\}$
 - (e) $E = \{k \in \mathbb{N} : 1 \le k^2 \le 100\}$
 - (f) $F = \{k \in \mathbb{Z} : 1 \le k^2 \le 100\}$

- 1.51. For $A = \{-1, 0, 1\}$ and $B = \{x, y\}$, determine $A \times B$.
- 1.52. Let $U = \{1, 2, 3\}$ be the universal set, and let $A = \{1, 2\}$, $B = \{2, 3\}$, and $C = \{1, 3\}$. Determine the following.
 - (a) $(A \cup B) (B \cap C)$
 - (b) \overline{A}
 - (c) $\overline{B \cup C}$
 - (d) $A \times B$
- 1.53. Let $A = \{1, 2, ..., 10\}$. Give an example of two sets S and B such that $S \subseteq \mathcal{P}(A)$, |S| = 4, $B \in S$, and |B| = 2.
- 1.54. For $A = \{1\}$ and $C = \{1, 2\}$, give an example of a set B such that $\mathcal{P}(A) \subset B \subset \mathcal{P}(C)$.
- 1.55. Give examples of two sets A and B such that
 - (a) $A \cap \mathcal{P}(A) \in B$
 - (b) $\mathcal{P}(A) \subseteq A \cup B$.
- 1.56. Which of the following sets are equal?

$$A = \{n \in \mathbb{Z} : -4 \le n \le 4\}$$
 $D = \{x \in \mathbb{Z} : x^3 = 4x\}$
 $B = \{x \in \mathbb{N} : 2x + 2 = 0\}$ $E = \{-2, 0, 2\}$
 $C = \{x \in \mathbb{Z} : 3x - 2 = 0\}$

- 1.57. Let A and B be sets in some unknown universal set U. Suppose that $\overline{A} = \{3, 8, 9\}$, $A B = \{1, 2\}$, $B A = \{8\}$, and $A \cap B = \{5, 7\}$. Determine U, A, and B.
- 1.58. Let I denote the interval $[0, \infty)$. For each $r \in I$, define

$$A_r = \{(x, y) \in \mathbf{R} \times \mathbf{R} : x^2 + y^2 = r^2\},\$$

$$B_r = \{(x, y) \in \mathbf{R} \times \mathbf{R} : x^2 + y^2 \le r^2\},\$$

$$C_r = \{(x, y) \in \mathbf{R} \times \mathbf{R} : x^2 + y^2 > r^2\}.$$

- (a) Determine $\bigcup_{r \in I} A_r$ and $\bigcap_{r \in I} A_r$.
- (b) Determine $\bigcup_{r \in I} B_r$ and $\bigcap_{r \in I} B_r$.
- (c) Determine $\bigcup_{r \in I} C_r$ and $\bigcap_{r \in I} C_r$.
- 1.59. Give an example of four sets A_1 , A_2 , A_3 , A_4 such that $|A_i \cap A_j| = |i j|$ for every two integers i and j with $1 \le i < j \le 4$.
- 1.60. (a) Give an example of two problems suggested by Exercise 1.59 (above).
 - (b) Solve one of the problems in (a).
- 1.61. Let $A = \{1, 2, 3\}$, $B = \{1, 2, 3, 4\}$, and $C = \{1, 2, 3, 4, 5\}$. For the sets S and T described below, explain whether |S| < |T|, |S| > |T|, or |S| = |T|.
 - (a) Let B be the universal set and let S be the set of all subsets X of B for which $|X| \neq |\overline{X}|$. Let T be the set of 2-element subsets of C.
 - (b) Let S be the set of all partitions of the set A and let T be the set of 4-element subsets of C.
 - (c) Let $S = \{(b, a) : b \in B, a \in A, a + b \text{ is odd}\}$ and let T be the set of all nonempty proper subsets of A.
- 1.62. Give an example of a set $A = \{1, 2, ..., k\}$ for a smallest $k \in \mathbb{N}$ having subsets A_1, A_2, A_3 such that $|A_i A_j| = |A_j A_i| = |i j|$ for every two integers i and j with $1 \le i < j \le 3$.