
MATH 111 Spring 2006

Practice Test 1 - Solutions

1. Read the textbook!
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(b) A ∩ B = {2, 4}, A = {1, 3, 5, 7, 9}, A ∪ B = {0, 2, 4, 6, 7, 8, 9, 10}
(c) Since A has six elements and B has five elements, A × B has 6 · 5 = 30

elements.

(d) (0, 1), (0, 2), (10, 5).

3. (a) Statements A ⊂ D, B ∈ D, ∅ ⊂ D are true. The other statements are false.

(b) |A| = |B| = |C| = 1, |D| = 3.

4. First of all, let’s rewrite the right endpoint: A
n

=

[

1

n
, 1 +

1

n

)

. Then the first

few intervals are: A1 = [1, 2), A2 =

[
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)

, A3 =

[
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, 1 +
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3

)

, etc. We see

that the left endpoint approaches 0 and the right endpoint approaches 1 as n gets
larger:

0 1 2

. . . 

intersection:

union:

intervals:

Therefore the union of these intervals is ∪
n∈NA

n
= (0, 2) and the intersection is

∩
n∈NA

n
= {1}.
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5. (a) We will use a truth table to show that P ⇔ Q and (P ∧Q) ∨ ((¬P ) ∧ (¬Q))
are logically equivalent.

P Q P ⇔ Q P ∧ Q ¬P ¬Q (¬P ) ∧ (¬Q) (P ∧ Q) ∨ ((¬P ) ∧ (¬Q))
T T T T F F F T
T F F F F T F F
F T F F T F F F
F F T F T T T T

Since the truth values of P ⇔ Q and (P ∧ Q) ∨ ((¬P ) ∧ (¬Q)) are the same
for all possible combinations of truth values of P and Q, these compound
propositions are logically equivalent.

(b) The compound statement (P ⇔ Q) ⇔ ((P ∧ Q) ∨ ((¬P ) ∧ (¬Q))) is a
tautology.

(c) The compound statement (P ⇔ Q) ⇔ ¬((P ∧ Q) ∨ ((¬P ) ∧ (¬Q))) is a
contradiction.

6. (a) ∃!x (x2 = 8) is false: there are two values of x that satisfy x2 = 8, namely,√
8 and −

√
8.

(b) ∀x∃y (xy = 0) is true: for any x we can choose y = 0, then we have xy = 0.

(c) ∀x∃!y (xy = 0) is false: if x = 0, then the value of y is not unique, e.g. y = 1
and y = 2 satisfy xy = 0.

(d) ∃x∀y (xy = 0) is true: let x = 0, then for any y we have xy = 0.

(e) ∃!x∀y (xy = 0) is true: if x = 0, then for any y we have xy = 0. Also, this
is the only value of x such that for any y the equation xy = 0 is satisfied,
because if x 6= 0, then e.g. for y = 1 the equation xy = 0 is not satisfied.

(f) ∀x∀z∃y (x + y = z) is true: for any x and for any z we can choose y = z − x,
and then we have x + y = z.

(g) ∀x∃y∀z (x + y = z) is false: given x, no matter what y we choose, the value
z = x + y + 1 does not satisfy x + y = z.

7. In all examples below, let x and y be real numbers.

(a) • ∃x∃yP (x, y) is true if P (x, y) is “x + y = 0” (e.g., let x = 0 and y = 0);

• ∃x∃yP (x, y) is false if P (x, y) is “x2 + y2 = −1” (there are no values of
x and y that satisfy the equation because the square of any real number
is nonnegative).

(b) • ∃x∀yP (x, y) is true if P (x, y) is “xy = 0” (see problem 6(d));

• ∃x∀yP (x, y) is false if P (x, y) is “x + y = 0” (no matter what x is, the
value y = −x + 1 does not satisfy the equation x + y = 0).

(c) • ∀x∃yP (x, y) is true if P (x, y) is “xy = 0” (see problem 6(b));

• ∀x∃yP (x, y) is false if P (x, y) is “xy = 1” (if x = 0, there is no value of
y that satisfies the equation xy = 1).
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(d) • ∀x∀yP (x, y) is true if P (x, y) is “x2 + y2 ≥ 0” (any real number squared
is nonnegative, so the left hand side is nonnegative);

• ∀x∀yP (x, y) is false if P (x, y) is “x + y = 0” (if x = 1 and y = 2, the
equation is not satisfied).

8. (a) We will show that for any integer n, the number 3n2 +5n is even. To do this,
we will consider two cases:
Case I: n is even. Then n = 2k for some k ∈ Z, and 3n2 + 5n = 3(2k)2 +
5(2k) = 12k2 + 10k = 2(6k2 + 5k). Since 6k2 + 5k ∈ Z, the number 3n2 + 5n
is even.
Case II: n is odd. Then n = 2k + 1 for some k ∈ Z, and 3n2 + 5n = 3(2k +
1)2 +5(2k+1) = 12k2 +12k+3+10k+5 = 12k2 +22k+8 = 2(6k2 +11k+4).
Since 6k2 + 11k + 4 ∈ Z, the number 3n2 + 5n is even.
Since 3n2+5n is never odd, the implication follows. (This is a vacuous proof.)

(b) If n is even, then n = 2k for some k ∈ Z, and 3n2 − 2n − 5 = 3(2k)2 −
2(2k) − 5 = 12k2 − 4k − 5 = 12k2 − 4k − 6 + 1 = 2(6k2 − 2k − 3) + 1. Since
6k2 − 2k − 3 ∈ Z, the number 3n2 − 2n − 5 is odd. (This is a direct proof.)

(c) We will prove the statement by contrapositive, namely, we will prove that if
n and m are of the same parity, then n − 5m is even, and thus not odd.
Let’s consider two cases:
Case I: n and m are both even. Then n = 2k and m = 2l for some k, l ∈ Z.
Then n − 5m = 2k − 5(2l) = 2k − 10l = 2(k − 5l). Since k − 5l ∈ Z, the
number n − 5m is even.
Case II: n and m are both odd. Then n = 2k + 1 and m = 2l + 1 for some
k, l ∈ Z. Then n−5m = 2k+1−5(2l+1) = 2k+1−10l−5 = 2k−10l−4 =
2(k − 5l − 2). Since k − 5l − 2 ∈ Z, the number n − 5m is even.

9. (a) For any real number x, x2 ≥ 0, therefore −x2 ≤ 0, and −5− x2 ≤ −5 + 0 =
−5 < 0. (This is a trivial proof.)

(b) If |x| = 5, then either x = 5 or x = −5. Thus we can consider the following
two cases:
Case I: x = 5. Then x2 + x + 1 = 52 + 5 + 1 = 31 > 20.
Case II: x = −5. Then x2 + x + 1 = (−5)2 + (−5) + 1 = 21 > 20.
(This is a proof by cases.)
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